基于分级聚类与SURF特征约束的图像真伪决策算法  被引量:1

Image true-false decision algorithm based on improved SURF coupled hierarchical clustering

在线阅读下载全文

作  者:桑书娟[1] 冯贺[1] 王璐[2] 

机构地区:[1]安阳工学院计算机科学与信息工程学院,河南安阳455000 [2]郑州大学信息工程学院,河南郑州450001

出  处:《计算机工程与设计》2017年第6期1602-1607,共6页Computer Engineering and Design

基  金:国家科技重大专项课题基金项目(2012zx04011-012)

摘  要:当前篡改图像识别算法在对组合篡改图像进行识别时,主要采用对像素或者块进行逐一匹配的方法来检测,导致识别精度不高、鲁棒性差等不足,为此提出改进的SURF耦合分级聚类的图像信息真伪决策算法。采用积分图像模型计算矩形区域像素强度的总和,通过计算Hessian矩阵提取特征点,构建圆形筛除器对SURF进行改进,对特征点数量进行整定,提高算法效率;引入最优节点优先方法 (best bin first method,BBF)对最近邻进行搜索,通过对特征点的特征描述符进行计算,完成特征点匹配;利用分级聚类方法,对特征点进行集群,创建层次树,完成图像的篡改检测。仿真结果表明,与当前图像篡改识别技术相比,所提算法具有更强的鲁棒性以及更高的检测精度。The current image forgery detection algorithm for complex image forgery detection,which mainly uses one by one comparison method to process the pixel or block for detection,resulting in the low detection accuracy and poor robustness and so on.The image forgery detection algorithm based on improved SURF coupled hierarchical clustering was proposed.The integral image model was used to calculate the sum of the pixel intensity in the rectangular region,the feature points were extracted by calculating the Hessian matrix,and the circular screen was constructed to improve the SURF,achieving the number of feature points to the whole set and improving the efficiency of the algorithm.The nearest neighbor was searched by introducing the best bin first method,and the feature descriptor of the feature points was calculated to complete feature point matching.Hierarchical clustering method was used to cluster the feature points and a hierarchical tree was created and the image forgery detection was completed.Simulation results show that the proposed algorithm has stronger robustness and higher detection accuracy compared with the current forgery detection methods.

关 键 词:图像真伪决策 分级聚类 积分图像 圆形筛除器 最优节点优先方法 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象