检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张文元[1,2] 张兵兵[1,2] 丁玉坤[1,2]
机构地区:[1]结构工程灾变与控制教育部重点试验室(哈尔滨工业大学),哈尔滨150090 [2]哈尔滨工业大学土木工程学院,哈尔滨150090
出 处:《哈尔滨工业大学学报》2017年第6期66-71,共6页Journal of Harbin Institute of Technology
基 金:国家自然科学基金面上项目(51178145)
摘 要:为分析重型钢桁架在横向荷载作用下的整体稳定性能,进而得到稳定系数公式,利用ABAQUS有限元程序建立基于梁单元的数值模型,通过线性屈曲分析确定钢桁架的合理初始几何缺陷形式,对其进行非线性荷载-位移全过程分析.探讨了上弦杆不同面外长细比时桁架整体稳定系数的变化规律,给出了稳定系数表达式,结果表明上弦杆面外长细比越小稳定系数增长的越快,并逐渐由失稳破坏转为强度破坏.在此基础上,考虑钢材强度、上下弦杆截面不等、荷载作用位置以及高跨比等参数的影响,以包络线形式给出了修正后的桁架整体稳定系数公式.To investigate the overall structural stability of the steel heavy truss and obtain stability coefficient under vertical loadings, the finite element models were established using ABAQUS program.The nonlinear analysis was carried out by introducing the initial geometric imperfection of the steel truss obtained through the linear elastic buckling analysis.The effect of the out-plane slenderness ratio of top chord on the stability of the steel truss was discussed to form the stability coefficient formula.Results show that the stability coefficient increases faster with the decreasing of the out-plane slenderness ratio of top chord, and buckling failure transits to strength failure when the out-plane slenderness ratio reduces to a specific value.Furthermore, the influence of steel strength, unequal sections of top and bottom chords, loading positions and depth-span ratios were studied, and the revised stability coefficient formula was suggested by a selected enveloping curve.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175