检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘辉昭[1] 陈晓霞[1] Liu Huizhao Chen Xiaoxia(School of Science, Hebei University of Technology, Tianjin 300401, China)
出 处:《河南师范大学学报(自然科学版)》2017年第4期47-52,110,共7页Journal of Henan Normal University(Natural Science Edition)
基 金:国家自然科学基金(11371110)
摘 要:利用分数阶Caputo微分及其理论,讨论了分数阶同步磁阻电机的混沌及其控制问题.首先利用分岔图、最大Lyapunov指数以及相图和时序图,分析了分数阶同步磁阻电机的混沌特性,研究了阶次对混沌行为的影响,得出同量分数阶系统出现混沌运动的最低阶次约为2.94.其次基于分数阶系统的稳定性理论,构造Lyapunov函数,设计合理的控制器,使其达到全局渐进稳定.最后通过数值仿真验证了该方法的有效性.In this paper we propose a fractional Synchronous Reluctance Motor(SynRM) by using the Caputo fractional differential and its theory. We also investigate the chaotic behaviors of the fractional SynRM. Firstly, we discuss chaotic char-acteristic of the fractional SynRM by analyzing the bifurcation diagram, Lyapunov exponent, phase portraits and time respon-ses. Then we study the influnce of system?s order to the chaos. In the case of commensurate fractional order SynRM system, the lowest order at which chaos exists is turned out to be about 2. 94. Based on the stability theory of fractional order system, Lyapunov function is constructed, a reasonable controller is designed to achieve global asymptotic stability. Finally, numerical investigations demonstrate the validity and feasibility of the presented control method.
分 类 号:O231.2[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249