检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陆长明[1,2,3] 陈明徕 罗秀娟[1] 张羽[1] 刘辉[1] 兰富洋 曹蓓[1]
机构地区:[1]中国科学院西安光学精密机械研究所,西安710119 [2]中国科学院大学,北京100049 [3]北京跟踪与通信技术研究所,北京100049
出 处:《物理学报》2017年第11期78-84,共7页Acta Physica Sinica
摘 要:针对传统剪切光束成像技术的准实时性问题,提出用口字形排布的四束光代替传统L形三束剪切光照射目标,研究了四光束剪切相干成像目标重构算法.只需单次测量就能同时重构出四幅目标图像,减少了用于降低散斑噪声、获取高质量图像所需的测量次数,同时大大减少了多组发射时的光束切换次数,提高了成像效率.在算法实现中,通过最小二乘法恢复出四组波前相位,利用散斑幅值的简单代数运算恢复波前幅值,从而重构出目标图像.仿真结果表明,与传统方法相比,在图像质量相同的前提下,本文方法所需的数据采集时间减少了至少1/2,不但提高了目标重构效率,还可为远程运动目标的成像识别提供更好的手段.Sheared-beam imaging, which is a nonconventional coherent laser imaging technique, can be used to better solve the problem of taking pictures with high resolution for remote targets through turbulent medium than conventional optical methods. In the previous research on this technique, a target was illunfinated by three coherent laser beams that were laterally arranged at the transmitter plane into an L pattern. In order to obtain a high quality image, a series of time-varying scattered signals is collected to reconstruct speckled images of the same object. To overcome atmospheric turbulence, multiple sets of three-beam laser should be emitted, which increases data acquisition time. In this paper, aiming at the quasi real-time problem of conventional sheared beam imaging technique, we use four-beam laser with rectangular distribution instead of the traditional L type sheared three-beam laser to illuminate the target. According to this, we propose a target reconstruction algorithm for four-beam sheared coherent imaging to reconstruct four target images sinmltaneously in one measurement, which can acquire high quality images by reducing the amount of measurement and the speckle noise. Meanwhile, it can greatly reduce the amount of beam switching in multi-group emission and improve the imaging efficiency. Firstly, the principle of the four-beam sheared coherent imaging technique is deduced. Secondly, in the algorithm, the speckle amplitude and phase difference frames can be extracted accurately by searching for the accurate positions of the beat frequency components. Based on the speckle phase difference frames, four sets of wavefront phases can be demodulated by the least squares method, and wavefront amplitude can be obtained by algebraic operation of speckle amplitude. The reconstructed wavefront is used for inverse Fourier transform to yield a two-dimensional image. A series of speckled images is averaged to form an incoherent image. Finally, the validity of the proposed technique is verified by simulations. Pro
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43