检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张小炳[1,2] 倪少权[1,2] 潘金山[1,2]
机构地区:[1]西南交通大学交通运输与物流学院,成都610031 [2]西南交通大学全国铁路列车运行图编制研发培训中心,成都610031
出 处:《计算机应用研究》2017年第7期1962-1965,共4页Application Research of Computers
基 金:国家自然科学基金资助项目(61273242;61403317);四川省科技厅软科学计划资助项目(2015ZR0141);中国铁路总公司科技研究计划资助项目(2013X010-A;2014X004-D)
摘 要:为了兼顾高速铁路的速度优势和旅客出行的方便,从列车停站数量的均衡性和区间的可达性出发,建立高速铁路列车停站方案的非线性多目标优化模型。结合模型的特点,设计了具有自适应性的遗传退火算法。自适应遗传算法控制全局的寻优方向,模拟退火的Metropolis邻域搜索策略提高算法的邻域搜索能力,可以快速搜索高质量的解。最后用2015年京沪高速铁路数据进行验证,并用得到的停站方案与原停站方案进行对比。结果表明,优化方案中开行列车的停站数量更加集中,停9站和停10站列车占开行列车总数的71.8%,显著提高了停站方案的均衡性,可达性提高约2.32%。In order to give full play to the speed advantage of high-speed railway and facilitate passenger travel, this paper proposed a nonlinear multi-objective optimization model which considered the balance of the number of the stops and the accessibility of the interval. And then it designed a genetic annealing algorithm with self adaptation based on the characteristics of the model. Applying adaptive genetic algorithm to control the global optimization direction and using Metropolis neighborhood search strategy of simulated annealing to improve the neighborhood search capability, the algorithm could search high quality solutions quickly. Finally, the optimization stop schedule which was obtained through the data of the Beijing Shanghai high-speed railway in 2015 was compared with the original stop plan. The results show that the number of the stops is more concentrated. The optimization stop schedule plan mainly operates trains of nine stops and ten stops which account for 71.8%. The balance improves significantly and the accessibility increases 2.32%.
关 键 词:铁路运输 停站方案 遗传退火算法 高速铁路 均衡性 可达性
分 类 号:TU292[建筑科学—建筑设计及理论] TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3