检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]咸阳师范学院数学与信息科学学院,陕西咸阳712000 [2]西安电子科技大学机电工程学院,西安710071
出 处:《计算机应用研究》2017年第7期1993-1996,共4页Application Research of Computers
基 金:国家自然科学基金资助项目(61501388;11501482)
摘 要:研究转移概率部分未知的时滞不确定的Markov跳跃系统随机稳定性问题,基于Lyapunov稳定理论,构造合适的Lyapunov泛函,使用自由权矩阵技术和凸结合技术来估计积分项的上界,同时也充分考虑时滞下界和上界的关系,得到保证Markov跳跃系统随机稳定性的充分性条件,该条件以线性矩阵不等式的形式表示。最后,数值例子和其仿真验证了所提方法的有效性和优越性。This paper focused on the stability problems of delayed Markovian jumping systems with uncertainty and partial information on transition probabilities. Based on Lyapunov stability theory, it constructed proper Lyapunov functional, and used free-weighting matrix technique and convex combination technique to estimate the upper of the integral terms. It derived some sufficient conditions to guarantee that the Markovian jumping systems were stochastic stability in terms of linear matrix inequalities, in which the relationship between the lower and the upper of delay were fully taken into account. Finally, a numerical example and its simulation verify the effectiveness and superiority of the proposed method.
关 键 词:MARKOV跳跃系统 转移概率部分未知 随机稳定性 线性矩阵不等式
分 类 号:TP302.7[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.239.69