检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李春[1,2] 刘卫国[1,2] 丁旭[1,2] 邹杰[1,2] 马建伟[1,2] 王凤凤[1,2] 林喆[1,2]
机构地区:[1]新疆大学资源与环境科学学院,新疆乌鲁木齐830046 [2]绿洲生态重点实验室,新疆乌鲁木齐830046
出 处:《生态科学》2017年第3期66-73,共8页Ecological Science
基 金:国家自然基金课题(31260112);国家自然基金新疆联合项目(U1138303)
摘 要:干旱区荒漠植物的叶绿素定量反演是动态监测、快速有效评估植物生物量及长势的有效方法。利用便携式可见-近红外光谱仪FieldSpecPro3测定绿洲、盐碱地及沙漠3种生境内的芦苇高光谱值,对高光谱数据一阶微分以及红边参数与叶绿素含量进行了相关分析,选取最佳红边参数建立经验估算模型与神经网络模型,并评估检验。模型显示,三种生境下均为二项式回归模型的决定系数最佳,检验精度的决定系数(R^2)分别为0.8466、0.8672和0.7935,均方根误差RMSE(root-mean-square error)分别为2.3601、1.4112和2.8002;BP神经网络模型的检验精度的决定系数(R^2)分别为0.9147、0.9331和0.8813,RSME分别为1.4010、0.9964和0.5559。结果表明,利用BP(back propagation)神经网络估算的模型精确度显著提高,可作为芦苇叶绿素高光谱反演的有效模型而使用,为荒漠植物叶片叶绿素的光谱特征反演提供了借鉴,为监测荒漠植物生长、产量估算及动态监测等提供可行的手段。The quantitative inversion of chlorophyll of desert plants in arid areas is an effective approach of dynamic monitoring and fast assessment of biomass and plant growth. Hyper spectral reflectances of Phragmites in Oasis habitat, saline area and desert habitat were measured by FieldSpecPro3 portable spectrometer. Correlation analysis was carried on hyperspectral data of first order and red edge parameters and chlorophyll content, meanwhile, red edge parameters were chose to establish optimal experience estimation model and the BPNN model. Models showed that the determination coefficients (R2) of binomial regression model reached the best, which were 0.8466, 0.8672 and 0.7935; RMSE was 2.3601, 1.4112 and 2.8002. For BPNN model, R2 of accuracy test separately was 0.9147, 0.9331 and 0.8813; RMSE was 1. 4010, 0.9964 and 0.5559. Thus, the accuracy of BPNN was the best model and it could be widely used to be a kind of good chlorophyll hyperspectral inversion model, in providing reference for desert plant chlorophyll spectral characteristics of the inversion and providing a convenient and feasible way for monitoring plant growth and physiological characteristics.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.190.81