出 处:《Science China Materials》2017年第6期471-486,共16页中国科学(材料科学(英文版)
基 金:financially funded by the National Natural Science Foundation of China (NSFC, 31370019, 61420106012);the project of National Key Basic Research Program of China (2013CB733804);The funding partially comes from the Fundamental Research Funds for the Central Universities (2242016K41072);Zhong Ying Young Scholar of Southeast University as well as the support fromthe Collaborative Innovation Center of Suzhou Nano Science and Technology
摘 要:There has been unprecedented progress in the development of biomedical nanotechnology and nanoma- terials over the past few decades, and nanoparticle-based drug delivery systems (DDSs) have great potential for clin- ical applications. Among these, magnetic drug delivery systems (MDDSs) based on magnetic nanoparticles (MNPs) are attracting increasing attention owing to their favor- able biocompatibility and excellent multifunctional loading capability. MDDSs primarily have a solid core of super paramagnetic maghemite (y-Fe^03) or magnetite (Fe304) nanoparticles ranging in size from 10 to 100nm. Their surface can be functionalized by organic and/or inorganic modification. Further conjugation with targeting ligands, drug loading, and MNP assembly can provide complex magnetic delivery systems with improved targeting efficacy and reduced toxicity. Owing to their sensitive response to external magnetic fields, MNPs and their assemblies have been developed as novel smart delivery systems. In this review, we first summarize the basic physicochemical and magnetic properties of desirable MDDSs that fulfill the requirements for specific clinical applications. Secondly, we discuss the surface modifications and functionalization issues that arise when designing elaborate MDDSs for future clinical uses. Finally, we highlight recent progress in the design and fabrication of MNPs, magnetic assemblies, and magnetic microbnbbles and liposomes as MDDSs for cancer diagnosis and therapy. Recently, researchers have focused on enhanced targeting efficacy and theranostics by applying step-by-step sequential treatment, and by magnetically mod- ulating dosing regimens, which are the current challenges for clinical applications.随着过去几十年来生物医学纳米技术和纳米材料领域的持续发展,基于纳米颗粒的药物输送系统逐渐开始有望应用于临床研究.其中,由于具有良好的生物相容性和优异的多功能负载能力,基于磁性纳米粒子的磁性药物传递系统受到越来越多的关注.本综述首先总结了磁性药物传递系统的基本物理化学性质,以阐明磁性药物传递系统需要保持适当的性能以满足特定的临床需要;其次,讨论了在设计未来临床应用的磁性药物传递系统时的表面修饰和功能化问题;最后,重点综述了磁性纳米颗粒、磁性组装体以及磁性微泡、磁性脂质体和生物膜修饰的磁性载体系统的设计和制备最新进展.最后,本综述对目前研究的磁性载体系统的设计、制备和安全性进行了总结,并对未来进一步解决磁性药物传递系统的临床应用瓶颈和前景进行了展望.
关 键 词:magnetic nanoparticles magnetic assembly drugdelivery system MULTIMODALITY THERANOSTICS
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...