检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国地质大学(北京)信息工程学院,北京100083
出 处:《地球信息科学学报》2017年第6期818-830,共13页Journal of Geo-information Science
基 金:国家自然科学基金项目(41371347;41671369)
摘 要:GEOBIA(Geographic Object-Based Image Analysis)技术针对高空间分辨率遥感影像分析的效果和精度远优于基于像元的传统方法。影像分割作为GEOBIA中的关键技术,学者们对此已经做了大量的研究,提出众多分割算法。对分割算法进行评价和分割技术本身同样重要,通过分割评价可以对分割算法的性能进行评价,比较不同分割算法的优劣,为影像选择合适的分割算法并设定合适的分割参数。影像分割的目的是为了实现影像分析操作的自动化,而主观评价法、系统评价法和分析评价法,因其无法给出客观定量指标的特点,难以应用于实时、自动化的高分辨率影像信息提取与分析系统当中。加之近年来针对分割评价方法的研究远远落后于分割算法本身,因此对定量分割评价方法进行综述对于影像分割方法及其应用研究意义重大。本文对现有的评价方法进行系统总结,建立了针对高空间分辨率遥感影像分割评价方法的分类体系。对各种方法,特别是定量的实验评价法进行对比,分析其应用范围和优劣,最后指出了高空间分辨率遥感影像分割评价未来的改进方向和应用前景。Geographic Object-Based Image Analysis (GEOBIA) is much better than traditional pixel-based method of high spatial resolution remote sensing image analysis. Since image segmentation is the key technique in GEOBIA, scholars and researchers have already conducted extensive research and proposed a number of segmentation algorithms. In order to compare different segmentation methods and evaluate its own performance, segmentation results need to be evaluated. Therefore, the study of segmentation evaluation is equally important to segmentation algorithm. We could choose the applicable segmentation method and set appropriate parameters for specific images and applied the segmentation evaluation. The aim of image segmentation is to enable the automation of image analysis. However, the evaluation methods which cannot provide quantitative indexes are not applicable in automatic real-time image analysis system. Moreover, research in segmentation evaluation is less than segmentation itself. Thus, it will be significant to study segmentation and review the quantitative evaluation method. In this paper, based on summarizing the evaluation methods, the hierarchy of segmentation evaluation method is presented. In spite of describing quantitative empirical methods, we discussed their range of application. Their advantages and shortcomings were also analyzed. Finally, possible future direction and potential application prospect for high spatial remote sensing image segmentation evaluation were proposed.
关 键 词:高空间分辨率遥感影像 GEOBIA 分割质量评价 差异评价 优度评价
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222