检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《江汉大学学报(自然科学版)》2017年第3期262-267,共6页Journal of Jianghan University:Natural Science Edition
摘 要:ROCCH理论主要用于解决代价敏感的二类分类器性能评估问题,如何有效地将其扩展到多类评估中是研究难点。采用二叉树思想和垂直平均方法,提出了一种新的代价敏感的多类分类器性能评估方法 BROCCH。B-ROCCH方法利用二叉树思想将三类分类问题转化为二类分类问题,使用垂直平均方法绘制三类ROC曲线,结合ROCCH思想,判断三类分类问题中的潜在最优分类器和最优分类器。在MBNC平台上对该方法进行了实现,与B-AUC方法的实验数据进行比较分析,证明B-ROCCH方法是可行的,且更具可区分性,速度也更快。ROCCH theory is mainly used to solve the performance evaluation of two-classifier which are cost sensitive,how to effectively extend it to multi class evaluation is the difficulty for research.With binary-tree and vertical average method,a new cost-sensitive three-classifier evaluation method B-ROCCH was made up. B-ROCCH method was used to transform three-classification problems into two-classification problems with the idea of binary-tree,three types of ROC curves were plotted withthe vertical average method,then combinated with the ROCCH thoughts,to determine the potential best classifier and the best classifier in the three-classification problems. The method was implemented on the MBNC platform,the experimental data were compared with the B-AUC evaluation method,the results prove that the B-ROCCH method is feasible,more distinguishable and faster.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70