检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]桂林电子科技大学商学院,广西桂林541004
出 处:《人民长江》2017年第11期77-81,共5页Yangtze River
基 金:广西自治区专项资金课题(14953-5)
摘 要:评标质量决定中标者与招标项目的契合程度,但受经验知识和主观判断等影响,定性指标的量化过程易带有主观模糊性,从而影响结果准确度。为减少模糊因素对评标结果的负作用,引入Z-number模糊数识别定性指标的不确定性,依据熵值原理客观确定评标指标及评标专家权重,TOPSIS法集成指标值,构建基于Z-number理论的改进TOPSIS法评标模型。结果表明,提议方法不仅能明晰度量定性指标值本身的模糊程度,还实现了指标值不确定性的针对化削减。同时,在有效避免主观赋权带来的不确定性基础上,该方法也克服了指标间的不可公度性。通过示例分析与敏感性分析验证了模型的实效性与稳定性。Bids evaluation quality determines the degree of compatibility between bidders and a bidding project, however under the influence of experiential knowledge and subjective judgment, the quantifying process of qualitative indexes tend to be of sub-jective fuzziness, which could affect results accuracy. In order to lessen the adverse effects of fuzziness on bids evaluation results,Z - number fuzzy number is introduced to recognize the uncertainty with qualitative indexes ; in accordance with entropy princi-ple ,bids evaluation criteria and the corresponding weights assigned by evaluation experts can be determined ; the TOPSIS tech-nique is used to integrate the index values, an improved TOPSIS method of bids evaluation model can then be established based on Z - number theory. The results show that the proposed method can determine the fuzziness of the qualitative indexes and reali-zes a reduction in the uncertainty with index values. Meanwhile, on the basis of avoiding the uncertainty due to subjective weights determination, the proposed method also overcomes the incommensurability between indexes. By conducting example and sensi-tivity analysis on proposed model, its effectiveness and stability are verified.
关 键 词:评标方法 Z-number模糊数 改进TOPSIS法 水利工程
分 类 号:TV51[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.35