26 GHz室内簇的时变特性及建模研究  被引量:2

Characteristics and models for indoor time-varying clusters at 26 GHz

在线阅读下载全文

作  者:赵雄文[1,2] 王琦[1] 张蕊[3] 李树[1] ZHAO Xiongwen WANG Qi ZHANG Rui LI Shu(School of Electrical and Electronic Engineering, North China Electric Power University, t3eijing 102206, China National Key Laboratory of Electromagnetic Environment, Qingdao 266107, China National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation, Qingdao 266107, China)

机构地区:[1]华北电力大学电气与电子工程学院,北京102206 [2]电波环境特性及模化技术重点实验室,青岛266107 [3]中国电波传播研究所电波环境特性及模化技术重点实验室,青岛266107

出  处:《电波科学学报》2017年第2期144-150,共7页Chinese Journal of Radio Science

基  金:电波环境特性及模化技术重点实验室(201600012);中央高校基金(2015XS19)

摘  要:基于室内大规模单输入多输出(Single-Input Multiple-Output,SIMO)测试,开展了26GHz毫米波无线信道簇变化量的时变特性建模研究.首先针对构建2020年信息社会的无线通信关键技术(Mobile and Wireless Communications Enablers for the Twenty-twenty Information Society,METIS)标准中分簇算法的不足进行改进,然后通过对功率时延谱求包络,来去除簇内射线及噪声对分簇结果的影响,在此基础上进行分簇会得到更加合理的结果.办公室环境下大规模虚拟天线阵列测试数据的分析结果表明,簇数目的变化量服从正态分布,经过不同时间簇数目变化量的均值和方差与二次函数较吻合.因此,将办公室场景下簇数目的变化量建模成均值和方差为二次函数的正态分布是合适的.In this paper, the characteristics and models for indoor time-varying clusters at 26 GHz are studied based on large scale single input multiple output(SIMO) measurements. The algorithm for finding clusters in METIS (Mobile and Wireless Communications Enablers for the Twenty twenty Information So- ciety) project was improved. In order to remove the effect of the rays in a cluster and the noise, the enve- lope for a power-delay-profile(PDP) is calculated before counting number of clusters, which is good to get a more reasonable result. Based on the measurement, the variation of number of clusters with time is modeled as a normal distribution with the mean and variance to follow a quadratic function with respect to the time intervals.

关 键 词:大规模SIMO 分簇算法 包络 簇数目 26 GHZ 

分 类 号:TN928[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象