检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:潘迅[1,2] 杨瑞[1,2] 泮斌峰[1,2] 唐硕[1]
机构地区:[1]西北工业大学航天学院,西安710072 [2]航天飞行动力学技术重点实验室,西安710072
出 处:《宇航学报》2017年第6期574-582,共9页Journal of Astronautics
基 金:国家自然科学基金(11672234)
摘 要:针对限制性三体问题中的平动点双脉冲转移,提出一种高效的计算方法。通过利用基于二维插值的数值流形近似方法对流形进行近似计算,同时利用二体模型下的圆锥曲线近似流形拼接段,根据经典轨道要素推导得到完成拼接所需的速度增量,避免在优化过程中对流形的重复积分计算,以及在三体模型下对拼接段的迭代计算,从而显著提高计算效率。然后推导得到三体问题下的主矢量理论,可将其用于对优化所得的双脉冲转移轨道进行燃料最优性的验证。最后,以航天器从近地圆轨道到地月系L1点的halo轨道的双脉冲转移为例进行数值仿真,验证数值流形近似算法和二体模型近似脉冲的有效性,并表明该方法在优化过程中具有高效性。An efficient calculation method is proposed for the optimization of the two-impulse transfers to the librations in circular restricted three-body problem. With the invariant manifolds approximation based on a two-dimensional interpolation, the computation of the great number of manifold insertions is much more efficient. While the conic curve in a two-body problem used as an approximation of the transfer segment connecting the low Earth orbit and the stable manifold, the maneuvers can be deduced with the classical orbital elements, thus the iterative computation of the maneuvers is avoided in the optimization process. Then the primer vector of CRTBP is deduced to verify the optimality of the two-impulse transfer. At last, a numerical simulation of the two-impulse transfer from a low Earth orbit to a Lr point halo orbit is presented, verifying the validity of the two-body impulse approximation and the manifold approximation, and demonstrating the efficiency of the method.
关 键 词:圆限制性三体问题 平动点 不变流形近似 主矢量理论 轨道优化 地月转移
分 类 号:V448.2[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117