BP神经网络在立铣刀结构参数优化中的应用  被引量:6

The Application of BP Neural Network on Optimization of Solid End Mill Structure Parameter

在线阅读下载全文

作  者:赵淑军[1] 曾桂林[2] 刘均[2] 马术文 

机构地区:[1]航空工业成都飞机工业(集团)有限责任公司,成都610092 [2]西南交通大学机械工程学院先进设计与制造技术研究所,成都610031

出  处:《组合机床与自动化加工技术》2017年第6期18-21,25,共5页Modular Machine Tool & Automatic Manufacturing Technique

基  金:四川省科技支撑计划"民用飞机复合材料翼面外面及交点精确制造和数字化检测技术研究"(2014GZ0123)

摘  要:钛合金薄壁件的铣削加工过程中,刀具磨损速度快,并且工件容易变形,其主要因素是加工过程中切削力大,切削温度高。文章利用有限元仿真软件Advant Edge FEM铣削仿真数据,建立整体式立铣刀结构参数与切削力和切削温度的BP神经网络预测模型,并对切削预测模型进行了切削实验验证。在此基础上,利用BP神经网络模型的预测结果对整体式立铣刀的结构参数进行了优化,切削实验证明,优化后的刀具参数可以有效地降低切削力和切削温度,从而有效地改善过程中刀具的切削性能和工件的加工质量。The cutting force is very large and the cutting temperature is very high in the process of milling a titanium alloy thin-walled part,so the wear rate of milling tool is very fast and the part is deformed easily.In this paper,firstly,the sample data is obtained through simulating the process of milling titanium alloy thin-walled parts by AdvantEdge FEM. Secondly,the BP neural network model between cutting force and temperature with structure parameter of the solid end mill has been built. Thirdly,the credibility of BP neural network model is verified. Finally,the structure parameter of the solid end mill has been optimized through the data from BP neural network prediction model. The cutting force and temperature will be reduced after optimization of the structure parameter of milling tool. The performance of cutting tool and the quality of parts all have been improved.

关 键 词:整体式立铣刀 铣刀结构参数 优化 

分 类 号:TH162[机械工程—机械制造及自动化] TG506[金属学及工艺—金属切削加工及机床]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象