检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈小龙[1] 关键[1] 何友[2] 于晓涵 Chen Xiaolong Guan Jian He You Yu Xiaohan(Department of Electronic and Information Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China Institute of Information Fusion, Naval A eronautical and Astronautical University, Yantai 264001, China)
机构地区:[1]海军航空工程学院电子信息工程系,烟台264001 [2]海军航空工程学院信息融合研究所,烟台264001
出 处:《雷达学报(中英文)》2017年第3期239-251,共13页Journal of Radars
基 金:国家自然科学基金(61501487;61401495;U1633122;61471382;61531020);山东省自然科学基金(2015ZRA06052);航空基金(20162084005;20162084006;20150184003);中国科协"青年人才托举工程"和"泰山学者"专项经费~~
摘 要:复杂背景下稳健高效的低可观测动目标检测始终是雷达信号处理领域的研究热点和难点,一方面,强杂波背景和目标复杂运动使得信号微弱,时频域难以区分;另一方面,相参积累算法复杂,长时间积累运算量较大,如何利用有限的雷达资源提高雷达探测性能成为亟需解决的问题。高分辨稀疏表示技术从信号稀疏性角度出发区分杂波和动目标,是传统变换域动目标检测技术的拓展,具有高时频分辨率、对噪声不敏感、稳健性高以及适于多分量信号分析的优势,有广阔应用前景。该文重点从应用角度进行归纳总结,系统回顾了雷达动目标检测的常规方法,然后对稀疏表示在雷达杂波特性分析、抑制、动目标检测、特征提取、时频分析等方面的应用进行了初步总结和归纳,对研究方向进行展望,最后结合实测数据和已有成果给出了部分处理结果。To address difficulties in radar signal processing, the effective and efficient detection of lowobservable moving targets in complex environments is an ongoing research hotspot. On the one hand, a signal may be extremely weak due to strong clutter and the complex motion of a target, making it hard to separate them in the time and frequency domains. On the other hand, complex coherent integration methods and the heavy computational burden of long-time integration represent challenges for improving radar detection performance with limited resources. High-resolution sparse representation can separate clutter from a moving target with respect to signal sparsity, and can be regarded as an extension of traditional transform-based moving target detection methods. This method has promising application prospects due to the advantages of its high time-frequency resolution, anti-noise property, robustness, and suitability for the analysis of multi-signals. In this paper, we systematically review conventional radar moving target detection methods. Then, we summarize their applications, including sparse representation in clutter property analysis, suppression, moving target detection, signature extraction, and time-frequency analysis. Next, we consider future developments.Finally, we provide some results based on real datasets and existing research.
关 键 词:雷达目标检测 低可观测动目标 稀疏表示 时频分析 微多普勒 稀疏时频分布(STFD)
分 类 号:TN957.51[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.225