检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾文浩[1] 朱晓华[1] 李洪涛[1] 庄珊娜[2]
机构地区:[1]南京理工大学电子工程与光电技术学院,江苏南京210094 [2]石家庄铁道大学信息科学与技术学院,河北石家庄050043
出 处:《南京理工大学学报》2017年第3期337-343,共7页Journal of Nanjing University of Science and Technology
摘 要:为提高稀疏阵列下二维波达方向(2D-DOA)估计的效率,提出1种基于加速近邻梯度矩阵填充的子阵重构旋转子空间(APG-SRESPRIT)算法。建立了基于矩阵填充的稀疏阵列DOA估计信号模型,并验证该信号模型满足零空间性质。通过加速近邻梯度算法将该信号模型恢复为完整信号,划分子阵并构建合并矩阵。对合并矩阵进行奇异值分解,在子阵重构后估计目标角度,且目标角度自动配对。仿真实验表明该文算法可减少70%的阵元数量,且在稀疏阵列下准确估计2D-DOA。An accelerated proximal gradient singular value thresholding based subarray reconstruct ESPRIT ( APG- SRESPRIT) algorithm is proposed to improve the efficiency of two-dimensional direction- of-arrival ( 2D-D0A) estimation of sparse arrays. A DO A estimation signal model of sparse arrays is built based on matrix completion, and is proved to meet the null space property ( NSP). The model is recovered to a complete signal model via accelerated proximal gradient singular value thresholding( APG) , and subarrays are reconstructed to build a merged matrix. The singular value decomposition ( SYD) of the merged matrix is solved, the target angles are obtained after subarray re-construction, and the target angles can match automatically. Simulation experiments show that this algorithm can decrease the array number by 7 0 % ,and estimate the 2D-DOA of sparse arrays precisely.
关 键 词:阵列信号处理 矩阵填充 子阵重构 波达方向估计 稀疏阵列 零空间性质 奇异值分解
分 类 号:TN911.72[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.115.102