基于稀疏随机矩阵的再生码构造方法  被引量:7

Regenerating codes construction method based on sparse random matrix

在线阅读下载全文

作  者:徐志强[1,2] 袁德砦 陈亮[1,2] 

机构地区:[1]中国科学院成都计算机应用研究所,成都610041 [2]中国科学院大学计算机与控制学院,北京100049

出  处:《计算机应用》2017年第7期1948-1952,1959,共6页journal of Computer Applications

基  金:四川省科技厅支撑计划项目(2015GZ0088)~~

摘  要:针对已有的再生码编码方案的运算是基于有限域GF(q)、运算复杂度高、效率低的问题,提出了一种将GF(2)上的稀疏随机矩阵和乘积矩阵框架相结合的再生码构造方法。首先,将文件数据矩阵式排布后根据编码矩阵进行行异或运算;其次,节点失效后,参与帮助节点根据失效节点的编码向量编码本地数据并发送至修复节点;最后,修复节点根据接收到的数据译码出失效节点原有的数据。实验结果表明修复带宽至多只有传统纠删码修复方案的1/10,相比基于传统范德蒙编码矩阵的再生码,编码速率提升了70%,译码恢复速率提升了50%,方便了再生码在大规模存储系统中的应用。Concerning the problem that the calculations of the existing regenerating code schemes is based on GF(q), and it has high computational complexity and low efficiency, a regenerating code construction method based on sparse random matrix over GF(2) and product matrix framework was proposed. Firstly, file data was arranged in a matrix and the row XOR operation was performed according to encoding matrix. Secondly, local data was encoded by helper nodes according to failed node's encoding vector and sent to repair node. Finally, the failed node's data was decoded by repair node according to received data. The experimental results show that the repair bandwidth of the proposed method is only one-tenth of traditional erasure code at most, and the encoding rate increases by 70% and decoding recovery rate increases by 50% compared with regenerating code based on conventional Vandermonde matrix, which facilitates the application of regenerating code in massive storage system.

关 键 词:分布式存储可靠性 再生码 稀疏随机矩阵 修复带宽 节点失效 

分 类 号:TP302.8[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象