基于深度信念网络的事件识别  被引量:14

Event Recognition Based on Deep Belief Network

在线阅读下载全文

作  者:张亚军[1] 刘宗田[1] 周文[1] 

机构地区:[1]上海大学计算机工程与科学学院,上海200444

出  处:《电子学报》2017年第6期1415-1423,共9页Acta Electronica Sinica

基  金:国家自然科学基金项目(No.61273328;No.61305053;No.71203135)

摘  要:事件识别是信息抽取的重要基础.为了克服现有事件识别方法的缺陷,本文提出一种基于深度学习的事件识别模型.首先,我们通过分词系统获得候选词并将它们分为五种类型.然后选择六种识别特征并制定相应的特征表示规则用来将词转化为向量样例.最后我们通过深度信念网络抽取词的深层语义信息,并由Back-Propagation(BP)神经网络识别事件.实验显示模型最高F值达85.17%.同时,本文还提出了一种融合无监督和有监督两种学习方式的混合监督深度信念网络,该网络能够提高识别效果(F值达89.2%)并控制训练时间(增加27.50%).Event recognition is critical to information extraction. To overcome limitations of the exiting event recognition approaches, we proposed an event recognition model based on deep learning (DL-ERM). Firstly, we acquired candidate words through a word segmentation system and classified them into five categories. Then, we selected six recognition feature layers and constructed corresponding feature representation rules to convert words into vector samples. Finally, we employed a deep belief network (DBN) to extract deep semantic features of words, and used a back propagation neural network to identify events. The results of experiments show that the maximum F-measure is 85.17%. Furthermore,we presented a hybrid-supervised DBN, which combines the unsupervised and supervised learning. The novel DBN improves the recognition performance (89.2% F-measure) and effectively controls the training time (increased by 27.50% ).

关 键 词:事件识别 深度学习 识别特征 特征表示 混合监督 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象