检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周小利[1] 王宏强[1] 程永强[1] 秦玉亮[1]
机构地区:[1]国防科技大学电子科学与工程学院,湖南长沙410073
出 处:《国防科技大学学报》2017年第3期151-157,共7页Journal of National University of Defense Technology
基 金:国家自然科学基金资助项目(61302149;61302142);高等学校博士学科点专项科研基金博导类资助项目(20124307110013)
摘 要:传统的关联成像方法未考虑复杂扩展目标的结构信息,在高分辨成像时的应用受到限制,为此提出一种自适应结构配对稀疏贝叶斯学习方法。该方法在稀疏贝叶斯学习的框架内针对扩展目标建立一种结构配对层次化高斯先验模型,然后采用变分贝叶斯期望-最大化算法交替进行目标重构和参数优化。该方法将某一信号分量的重构与周围信号分量联系起来,并能在迭代过程中自适应地调整表征各信号分量相关性的参数。实验结果表明,该方法针对扩展目标可以有效地进行高分辨成像。Radar coincidence imaging is a high-resolution staring imaging technique without the limitation of relative motion between target and radar. Conventional radar coincidence imaging methods ignore the structure information of complex extended target, which limits its applications in high resolution imaging, thus an adaptive pattern-coupled sparse Bayesian learning algorithm was proposed. To model the extended target, a pattern-coupled hierarchical Gaussian prior model was introduced in sparse Bayesian learning framework, and then the algorithm alternated between steps of target reconstruction and parameter optimization under the variational Bayesian expectation maximization framework. Therefore, the reconstruction of each coefficient involved its immediate neighbors, and the parameter indicating the pattern relevance between the coefficient and its immediate neighbors was updated adaptively during the iterations. Experimental results demonstrate that the proposed algorithm can achieve high resolution imaging effectively for the extended target.
关 键 词:雷达关联成像 扩展目标 稀疏贝叶斯学习 结构配对 变分贝叶斯期望-最大化
分 类 号:TN957[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222