检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭岩虎 GUO Yan-hu(Changji Water Conservancy Bureau Key Water Conservancy Project Construction Administrative Office, Changji 831100, China)
机构地区:[1]昌吉州水利局重点水利工程建设管理处,新疆昌吉831100
出 处:《水科学与工程技术》2017年第3期91-94,共4页Water Sciences and Engineering Technology
摘 要:针对大坝实时性态预测方法精度,首先基于Ito随机微分方程对某坝的多年扬压力监测极值建立GM(1,1)了实测序列预测模型,并根据建立模型的残差序列构建了Markov残差模型,其次对比分析了GM(1,1)残差预测模型和Markov残差模型。最后,综合GM(1,1)模型和Markov残差模型建立灰色Markov模型,并利用灰色Markov模型预测扬压力的极大值。计算结果表明,建立的灰色Markov模型不仅能提高预报精度还能真实地反映其过程的摆动性。Aiming at the problem of accuracy of real time state prediction method. First of all, based on the Ito stochastic differential equation, the GM (1, 1 ) prediction model is established for monitoring the extreme pressure of a dam, and the Markov residual model is constructed according to the residual sequence. Secondly, the GM (1,1) residual prediction model and Markov residual model are compared and analyzed. Finally, the GM (1,1) model and the Markov residual model are used to establish the grey Markov model, and the maximum value of the uplift pressure is predicted by using the grey Markov model. The results show that the grey Markov model can not only improve the prediction accuracy, but also truly reflect the swing of the process.
关 键 词:Ito随机微分方程 灰色Markov模型 残差辨识 关联度 预报精度
分 类 号:TV698.1[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249