检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪洋[1] 张华年[1] 李思婵 陈渝军[1] 许琼[1] 徐华[1] 梁美锋 WANG Yang ZHANG Huanian LI Sichanl CHEN Yujun XU Qiong XU Hua LIANG Meifeng(Wuhan Medical & Healthcare Center for Women and Children, Wuhan 430016, China China Resources & WISCO General Hospital, Wuhan 430080, China)
机构地区:[1]武汉市妇女儿童医疗保健中心,武汉430016 [2]华润武钢总医院,武汉430080
出 处:《中国现代应用药学》2017年第6期881-887,共7页Chinese Journal of Modern Applied Pharmacy
基 金:湖北省卫生厅2011-2012年度科研项目(JX5B74)
摘 要:目的研究建立人工神经网络模型用于评估大剂量甲氨蝶呤(high-dose methotrexate,HDMTX)化疗后的骨髓抑制程度,促进个体化用药。方法收集180例急性淋巴细胞白血病患儿行HDMTX化疗的临床资料。将所有资料随机分成2组,训练组(n=150):以化疗后中性粒细胞总数(NEU)减少率为输出目标,采用遗传算法配合动量法训练后建立人工神经网络;测试组(n=30):用建立的人工神经网络预测测试组患儿的NEU减少率,通过计算平均预测误差(MPE)、权重残差(WRES)、平均绝对预测误差(MAE)、平均预测误差平方(MSE)和均方根预测误差(RMSE)来验证模型。结果人工神经网络的MPE为(-2.05±7.41)%,WRES为(23.20±29.74)%,MAE为(6.12±4.53)%,MSE为(57.26±64.46)(%)2,RMSE为7.57%,有76.67%的病例相对预测误差在±20%以内。人工神经网络预测的准确度及精密度均优于多元线性回归模型(逐步回归法)。结论本研究建立的人工神经网络预测性能较好,可用于预测HDMTX化疗后骨髓抑制程度以指导个体化用药。OBJECTIVE To establish an artificial neural network(ANN) to evaluate the bone marrow depression following high-dose methotrexate(HDMTX) chemotherapy, and to facilitate individualized therapeutic regimens. METHODS Data obtained from 180 cases of children with acute lymphoblastic leukemia during HDMTX treatment were divided into two groups randomly, as training group(n=150) and testing group(n=30). The decrease percent in NEU count post-HDMTX infusion was selected as the ANN output, which was the prediction marker of bone marrow depression. ANN was established after the network parameters were trained by using momentum method combined with genetic algorithm based on the training group data. The decrease percent in NEU count of testing group patients were predicted by ANN established, and the mean predicted error(MPE), weighted residuals(WRES), mean absolute prediction error(MAE), mean squared prediction error(MSE), root mean squared prediction error(RMSE) were calculated to assess the ANN model. RESULTS The assessed results of ANN were MPE(-2.05±7.41)%, WRES(23.20±29.74)%, MAE(6.12±4.53)%,MSE(57.26±64.46)(%)2, RMSE 7.57%, respectively. There were 76.67% of relative prediction error within ±20%. The accuracy and precision of ANN were superior to those of multiple linear regression with stepwise method. CONCLUSION The performance of ANN established in this study is good enough to predict the degree of bone marrow depression following HDMTX chemotherapy and optimize individualized saving regimens.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117