面向云平台安全监控多维数据的离群节点自识别可视化技术  被引量:3

Multidimensional data visualization in cloud platform security monitoring

在线阅读下载全文

作  者:吴頔[1,2] 王丽娜[1,2] 余荣威[1,2] 章鑫[1,2] 徐来[1,2] WU Di WANG Li-na YU Rong-wei ZHANG Xin XU Lai(Key Laboratory of Aerospace Informationsecurity and Trusted Computing Ministry of Education Wuhan University, Wuhan 430072, Hubei, Chin Computer School, Wuhan University, Wuhan 430072, Hubei, China)

机构地区:[1]武汉大学空天信息安全与可信计算教育部重点实验室,湖北武汉430072 [2]武汉大学计算机学院,湖北武汉430072

出  处:《山东大学学报(理学版)》2017年第6期56-63,共8页Journal of Shandong University(Natural Science)

基  金:国家自然科学基金资助项目(U1536204;61373169);国家科技支撑计划项目(2014BAH41B00);国家高技术研究发展(863)计划项目(2015AA016004);信息保障技术重点实验室开放基金资助项目(KJ-14-110;KJ-14-101)

摘  要:通过总结目前云平台安全监控的数据可视化技术,结合具体的多维监控数据探讨可视化技术的应用方法,从时间、节点号、性能指标类型三个维度出发,提出了基于维度压缩与维度切面的性能数据集可视化方法,并在此基础上,应用动态时间规划和卷积神经网络实现离群节点自识别,丰富扩展了警报系统的语义。经实验验证方法可行,能够更直观地展现有效信息,提高云管理员的决策效率。Discussed application method of visualization technology by summarized visualization technology of cloud platform security monitoring and combined with the specific multidimensional monitoring data. Started from the three dimensions of time,node number and performance index type,a visualization method of performance data set based on dimension compression and dimension slice is proposed. Based on this,node self-identification of outliers achieved by used the dynamic time planning and convolution neural network,which extends and riches semantics of the alarm system.It was proved that the method was feasible and could show the effective information more intuitively and improve the decision efficiency of the cloud administrator.

关 键 词:云安全 云平台安全监控 可视化技术 离群节点自识别 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象