检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘飞[1] 郑新奇[1] 黄晴[1] LIU Fei ZHENG Xinqi HUANG Qing(School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China)
机构地区:[1]中国地质大学(北京)信息工程学院,北京100083
出 处:《地理科学进展》2017年第6期677-684,共8页Progress in Geography
基 金:国家国际科技合作与交流专项(S2015ZR1018)~~
摘 要:城市群是城市地理学的重要研究领域,对城市群的实体空间进行界定识别是研究城市群的前提和基础。城市群作为众多城镇的集群,前人对城市群的空间识别主要是以城市为单元进行的,缺少对识别单元空间形态的考虑。城市群实体空间的形态具有自相似性,空间分形特征可作为自相似性的表征工具,通过对空间分形特征的分析、识别及提取,可以实现对空间对象基于形态的客观测度。本文借鉴单个城市其边界的相关识别方法,从不同尺度的空间最小可识别单元出发,测度城市群城镇空间形态的分形特征,并据此提出了城市群城镇的客观识别方法。该方法利用城镇的空间分形特征识别归属于城市群的城镇,通过空间最小可识别单元的变化得到不同的城镇规模并获取城市群城镇的空间分形特征,再以此为基础对空间分形特征的存在范围进行识别,将其映射于空间最终实现对城市群城镇的识别,进而得到城市群在空间上的分布状况。本文将该方法应用于京津冀城市群,基于2016年Landsat卫星遥感影像,实现了对京津冀城市群构成城镇的识别,为界定城市群的实体空间提供了一次有益尝试。Urban system study is an important field of urban geography. Identification of the physical space of urban systems is a precondition and basis for the research on urban systems. Existing research on urban system identification primarily took city as the minimum unit since urban systems are aggregations of towns and cities.They determine whether a city belong to an urban system through the comparison between values of selected indicators and the criteria set by subjective estimates, which unfortunately lacks consideration of spatial morphology. The morphology of the physical space of urban systems has self-similarity, which can be expressed by the feature of fractal. Through the analysis, identification, and extraction of fractals we can describe the spatial objects objectively based on morphology. In this study, by referencing the experience in identifying boundary of individual cities by fractal, we measured the spatial fractal feature of towns of urban systems from the perspective of spatially identifiable minimum unit at different scales, and proposed a method to identify the towns of urban systems. Through the change of identifiable minimum unit we obtained different scales of towns by which we derive their spatial fractal feature. Then, the range of spatial fractal features was identified, and the identification of urban systems that is the spatial distribution of urban systems was achieved by mapping the range to the space. Finally, this study applied the method to the Beijing-Tianjin-Hebei urban system and achieved the identification of the system based on Landsat images in 2016.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28