检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李立雪 李永强[1] 王力[2] 牛路标 黄腾达[1] 李有鹏[1] LI Lixue LI Yongqiang WANG Li NIU Lubiao HUANG Tengda LI Youpeng(School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China Information Engineering University, Zhengzhou 450001, China)
机构地区:[1]河南理工大学测绘与国土信息工程学院,河南焦作454000 [2]信息工程大学,河南郑州450001
出 处:《测绘科学技术学报》2017年第2期181-186,共6页Journal of Geomatics Science and Technology
基 金:测绘地理信息公益性行业科研专项经费项目(201412020);国家自然科学基金项目(41501491)
摘 要:从数据量庞大且散乱的车载LiDAR点云中分割出建筑物立面数据是一项繁琐而艰巨的工作。本文提出一种结合机载LiDAR点云的车载LiDAR点云建筑物立面分割方法。该方法在空-地点云严格配准的基础上,从机载LiDAR点云中分割出每栋建筑物的顶部点云,提取建筑物顶部外轮廓线并进行规则矢量化处理,设置轮廓线缓冲区实现立面点云的粗分割;再采用基于稳健特征值的平面拟合法对单栋建筑物的每个立面进行去噪滤波,实现建筑物立面的精细分割。试验结果证明了该算法对城市场景中车载LiDAR点云处理的有效性。The segmentation of the building facade point data from huge and scattered building point cloud is a complicated and difficult task. In this paper, a method of mobile LiDAR point cloud building facade segmentation combined with airborne LiDAR point cloud is proposed. Firstly, on the basis of the strict registration of the airborne LiDAR point cloud and mobile LiDAR point cloud, the roof point cloud of each building is segmented from airborne LiDAR point cloud. The outline of each roof is extracted and then regularized and vectorized. Then the coarse segmentation of the facade point cloud is achieved by setting contour line buffer. Finally each facade of the single building is filtered and denoised by using the method of robust eigenvalue plane fitting, which can achieve fine segmentation of the building facade. Experimental results demonstrate the effectiveness of the proposed algorithm for urban scene mobile LiDAR point cloud processing.
关 键 词:车载LiDAR 外轮廓提取 建筑物立面分割 缓冲区 平面拟合
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3