检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡敏杰[1] 杨红和[2] 傅为[1] 郑荔平[1]
机构地区:[1]闽南师范大学计算机学院,福建漳州363000 [2]闽南师范大学教务处,福建漳州363000
出 处:《闽南师范大学学报(自然科学版)》2017年第2期12-22,共11页Journal of Minnan Normal University:Natural Science
摘 要:在多标记学习中,一个样本不仅同时具有多个标记,而且还由高维特征描述,解决特征间的相关性和冗余性以应对维数灾难问题是多标记学习前的一个重要步骤.文中将谱图理论与多标记数据的特征选择相结合,提出基于特征关联的多标记谱特征选择算法.该算法假设各标记之间独立,首先对各单个标记考虑特征间的相关性和冗余性构建目标函数生成与该标记相关的一组特征排序;然后对各标记产生的排序进行融合,最后得到一组合理的特征序列.在4个数据集和5个评价指标上的实验表明,文中算法优于当前流行的多标记特征选择算法.In the multi-label learning a sample may be assigned with more than one decision label, and also described with high-dimensional vectors, solving the correlation and redundancy among features to conquer the curse of dimensionality is an important step in multi-label learning before. In this paper, the spectral theory is applied to the feature selection of multi-label data. The algorithm assumes that each independent label. First, it considers the correlation and redundancy between features based on different labels to construct objective function ,which can generate a set of features under each label; Then, it fuses all individual feature rank lists and gets a reasonable feature sequence. Experiments on four datasets and five evaluation criteria show that the proposed algorithm is superior to several state -of -the -art multi -label feature selection algorithms.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.76