检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《统计与决策》2017年第14期10-14,共5页Statistics & Decision
基 金:中央高校基本科研业务费专项资金资助项目(SWJTU11CX155)
摘 要:文章基于贝叶斯学习,将正则化方法从贝叶斯分析的角度展开,在响应变量服从正态分布、回归系数服从指数型先验分布族的条件下,用贝叶斯准则给出了惩罚因子的取值与响应变量、系数的方差之间的关系,并将这一结果应用到岭回归和lasso回归中惩罚因子的选择。实例检验结果表明,当响应变量和系数服从正态分布,惩罚因子的值取二者方差商的方法比岭迹法和广义交叉验证法(GCV)拟合效果更优。Based on Bayesian learning, this paper develops regularization method from the angle of Bayesian analysis. In the condition of response variable subjected to normal distribution and regression coefficients subjected to the exponential prior distri- bution family, the paper presents the relationship of penalty factors values, response variable and coefficients variance by use of Bayesian rule, and applies the result to the adoption of penalty factor of ridge regression and lasso regression. The empirical test result shows that when the response variable and coefficients follow normal distribution, as far as the fitting effect is concerned, the method for penalty factor value to select the quotient between response variable and regression coefficients variance is better than ridge trace, generalized cross validation (GCV) method.
关 键 词:正则化方法 惩罚因子 贝叶斯准则 岭回归 lasso回归
分 类 号:O212.8[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249