检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津大学机械工程学院,天津300072 [2]天津市非线性动力学与混沌控制重点实验室,天津300072
出 处:《振动与冲击》2017年第14期189-193,共5页Journal of Vibration and Shock
基 金:国家自然科学基金(51175370);天津市应用基础与前沿技术研究计划重点项目(13JCZDJC34300)
摘 要:针对感应电机定子在旋转磁拉力的作用下所产生的参激弹性振动问题,采用能量法建立机、电、磁多场耦联动力学模型。利用伽辽金离散得到了常微分形式的动力学模型,并应用多尺度法揭示了重要基本参数与稳定性之间的映射关系,还给出了解析形式的不稳定边界。研究结果表明,该边界与定子支撑刚度、柔度、相电流和线圈节距等机、电、磁参数有关。采用Floquét理论计算了不稳定域,并应用龙格-库塔方法求解响应,验证了解析结果的正确性。该研究结果为参数的合理选择提供了理论借鉴。The work aims at the parametric vibration of the elastic stator of induction motors excited by rotating magnetic loads. A mechanical-electromagnetic coupling model was established by using the energy method and a corresponding ordinary differential equation was obtained by using the Galerkin method. The multi-scale method was employed to reveal the relationship between the important basic parameters and stability and also to provide the analytical unstable boundary. The results imply that the boundaries are dependent on the mechanical-electromagnetic parameters, including the support stiffness, bending flexibility, phase current and tooth pitch. The Floquet and Runge-Kutta methods were used to obtain the instability regions and the responses, respectively. The numerical results verify the conclusions from the analytical method. The results lay a theoretical reference for the parameter, s selection.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43