检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Linfeng Wang Qiao Meng Hao Zhi Fei Li
机构地区:[1]Institute of RF- & OE-ICs, Southeast University, Nanjing 210096, China
出 处:《Journal of Semiconductors》2017年第7期103-110,共8页半导体学报(英文版)
摘 要:A new loading-balanced architecture for high speed and low power consumption pipeline analog-todigital converter(ADC) is presented in this paper. The proposed ADC uses SHA-less, op-amp and capacitor-sharing technique, capacitor-scaling scheme to reduce the die area and power consumption. A new capacitor-sharing scheme was proposed to cancel the extra reset phase of the feedback capacitors. The non-standard inter-stage gain increases the feedback factor of the first stage and makes it equal to the second stage, by which, the load capacitor of op-amp shared by the first and second stages is balanced. As for the fourth stage, the capacitor and op-amp no longer scale down. From the system's point of view, all load capacitors of the shared OTAs are balanced by employing a loadingbalanced architecture. The die area and power consumption are optimized maximally. The ADC is implemented in a 0.18 μm 1P6M CMOS technology, and occupies a die area of 1.2×1.2 mm^2. The measurement results show a 55.58 dB signal-to-noise-and-distortion ratio(SNDR) and 62.97 dB spurious-free dynamic range(SFDR) with a 25 MHz input operating at a 200 MS/s sampling rate. The proposed ADC consumes 115 m W at 200 MS/s from a 1.8 V supply.A new loading-balanced architecture for high speed and low power consumption pipeline analog-todigital converter(ADC) is presented in this paper. The proposed ADC uses SHA-less, op-amp and capacitor-sharing technique, capacitor-scaling scheme to reduce the die area and power consumption. A new capacitor-sharing scheme was proposed to cancel the extra reset phase of the feedback capacitors. The non-standard inter-stage gain increases the feedback factor of the first stage and makes it equal to the second stage, by which, the load capacitor of op-amp shared by the first and second stages is balanced. As for the fourth stage, the capacitor and op-amp no longer scale down. From the system's point of view, all load capacitors of the shared OTAs are balanced by employing a loadingbalanced architecture. The die area and power consumption are optimized maximally. The ADC is implemented in a 0.18 μm 1P6M CMOS technology, and occupies a die area of 1.2×1.2 mm^2. The measurement results show a 55.58 dB signal-to-noise-and-distortion ratio(SNDR) and 62.97 dB spurious-free dynamic range(SFDR) with a 25 MHz input operating at a 200 MS/s sampling rate. The proposed ADC consumes 115 m W at 200 MS/s from a 1.8 V supply.
关 键 词:pipeline ADC loading-balanced op-amp sharing SHA-Less MDAC scaling down
分 类 号:TN792[电子电信—电路与系统] TN929.11
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.182.104