检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Institute of Astronomy,Russian Academy of Sciences
出 处:《Geodesy and Geodynamics》2017年第3期213-220,共8页大地测量与地球动力学(英文版)
摘 要:In this study, a method for determination of stations coordinates, Earth rotation parameters and gravity field coefficients in one solution from SLR data from LAGEOS and LEO is presented. A new software package based on the presented method has been developed. All recommendations from IERS Con- ventions 2010 have been included. In addition, some other perturbations and loading effects are taken into account: atmospheric tides, non-tidal atmosphere and ocean variability, albedo and non-tidal at- mospheric pressure loading. Results of different solutions with the use of only LAGEOS data or LAGEOS plus LEO satellites data are presented. Pole coordinates obtained from both solutions show comparable accuracy relative to IERS 08 C04 solution. As for UT1 corrections in terms of Length-of-Day an additional improvement in accuracy is found: 1.0 ms for LAGEOS and 0.2 ms for the combined LAGEOS + LEO solution. Time series of the estimated degree-2 gravity field coefficients show a very good agreement with results of the Center of Space Research (Austin/USA). As a final remark, some future mandatory steps are outlined.In this study, a method for determination of stations coordinates, Earth rotation parameters and gravity field coefficients in one solution from SLR data from LAGEOS and LEO is presented. A new software package based on the presented method has been developed. All recommendations from IERS Con- ventions 2010 have been included. In addition, some other perturbations and loading effects are taken into account: atmospheric tides, non-tidal atmosphere and ocean variability, albedo and non-tidal at- mospheric pressure loading. Results of different solutions with the use of only LAGEOS data or LAGEOS plus LEO satellites data are presented. Pole coordinates obtained from both solutions show comparable accuracy relative to IERS 08 C04 solution. As for UT1 corrections in terms of Length-of-Day an additional improvement in accuracy is found: 1.0 ms for LAGEOS and 0.2 ms for the combined LAGEOS + LEO solution. Time series of the estimated degree-2 gravity field coefficients show a very good agreement with results of the Center of Space Research (Austin/USA). As a final remark, some future mandatory steps are outlined.
关 键 词:SLR LAGEOS LEO Gravity field Earth rotation GGOS
分 类 号:P22[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229