Microwave hydrothermal synthesis and characterization of rare-earth stannate nanoparticles  

Microwave hydrothermal synthesis and characterization of rare-earth stannate nanoparticles

在线阅读下载全文

作  者:Shuang Huang Hua-lan Xu Sheng-liang Zhong Lei Wang 

机构地区:[1]College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China [2]Analytical and Testing Center, Jiangxi Normal University, Nanchang 330022, China

出  处:《International Journal of Minerals,Metallurgy and Materials》2017年第7期794-803,共10页矿物冶金与材料学报(英文版)

基  金:financially supported by the National Natural Science Foundation of China (Nos. 21641008 and 91622105);the Jiangxi Provincial Department of Science and Technology (Nos. 20161BAB203083 and 20151BDH80049)

摘  要:Rare-earth stannate(Ln_2Sn_2O_7(Ln = Y, La–Lu)) nanocrystals with an average diameter of 50 nm were prepared through a facile microwave hydrothermal method at 200°C within 60 min. The products were well characterized. The effect of reaction parameters such as temperature, reaction time, p H value, and alkali source on the preparation was investigated. The results revealed that the p H value plays an important role in the formation process of gadolinium stannate(Gd_2Sn_2O_7) nanoparticles. By contrast, the alkali source had no effect on the phase composition or morphology of the final product. Uniform and sphere-like nanoparticles with an average size of approximately 50 nm were obtained at the p H value of 11.5. A possible formation mechanism was briefly proposed. Gd_2Sn_2O_7:Eu^(3+) nanoparticles displayed strong orange-red emission. Magnetic measurements revealed that Gd_2Sn_2O_7 nanoparticles were paramagnetic. The other rare-earth stannate Ln_2Sn_2O_7(Ln = Y, La–Lu) nanocrystals were prepared by similar approaches.Rare-earth stannate(Ln_2Sn_2O_7(Ln = Y, La–Lu)) nanocrystals with an average diameter of 50 nm were prepared through a facile microwave hydrothermal method at 200°C within 60 min. The products were well characterized. The effect of reaction parameters such as temperature, reaction time, p H value, and alkali source on the preparation was investigated. The results revealed that the p H value plays an important role in the formation process of gadolinium stannate(Gd_2Sn_2O_7) nanoparticles. By contrast, the alkali source had no effect on the phase composition or morphology of the final product. Uniform and sphere-like nanoparticles with an average size of approximately 50 nm were obtained at the p H value of 11.5. A possible formation mechanism was briefly proposed. Gd_2Sn_2O_7:Eu^(3+) nanoparticles displayed strong orange-red emission. Magnetic measurements revealed that Gd_2Sn_2O_7 nanoparticles were paramagnetic. The other rare-earth stannate Ln_2Sn_2O_7(Ln = Y, La–Lu) nanocrystals were prepared by similar approaches.

关 键 词:microwave hydrothermal synthesis rare-earth stannate nanoparticles 

分 类 号:TB383.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象