Fabricate organic thermoelectric modules use modified PCBM and PEDOT:PSS materials  被引量:1

Fabricate organic thermoelectric modules use modified PCBM and PEDOT:PSS materials

在线阅读下载全文

作  者:FengGAO Yuchun LIU Yan XIONG Ping WU Bin HU Ling XU 

机构地区:[1]Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

出  处:《Frontiers of Optoelectronics》2017年第2期117-123,共7页光电子前沿(英文版)

基  金:We acknowledge the financial support provided by the National Young Natural Science Foundation of China (Grant No. 61306067) and the Fundamental Research Funds for the Central Universities in Huazhong University of Science and Technology (Nos. 2014NY009 and 2016YXMS033).

摘  要:In this paper, we fabricated an organic thermo- electric (TE) device with modified [6,6]-phenyl-C61- butyric acid methyl ester (PCBM) and poly(3,4-ethylene- dioxythiophene) polystyrene sulfonate (PEDOT:PSS); the device showed good stability in air condition. For n-leg, PCBM were doped with acridine orange base (3,6-bis (dimethylamino)acridine) (AOB) and 1,3-dimethyl-2,3- dihydro- 1H-benzoimidazole (N-DMBI). Co-doped PCBM utilizes synergistic effects of AOB and N-DMBI, resulting in excellent electrical conductivity and Seebeck coefficient values reaching 2 S/cm and -500 μV/K, respectively, at room temperature with dopant molar ratio of 0.11. P-type leg used modified PEDOT:PSS. Based on modified PCBM and PEDOT:PSS materials, we fabricated a TE module device with 48 p-type and n-type thermocouple and tested their output voltage, short current, and power. Output voltage measured -0.82 V, and generated power reached almost 945 μW with 75 K temperature gradient at 453 K hot-side temperature. These promising results showed potential of modified PEDOT and PCBM as TE materials for application in device optimization.In this paper, we fabricated an organic thermo- electric (TE) device with modified [6,6]-phenyl-C61- butyric acid methyl ester (PCBM) and poly(3,4-ethylene- dioxythiophene) polystyrene sulfonate (PEDOT:PSS); the device showed good stability in air condition. For n-leg, PCBM were doped with acridine orange base (3,6-bis (dimethylamino)acridine) (AOB) and 1,3-dimethyl-2,3- dihydro- 1H-benzoimidazole (N-DMBI). Co-doped PCBM utilizes synergistic effects of AOB and N-DMBI, resulting in excellent electrical conductivity and Seebeck coefficient values reaching 2 S/cm and -500 μV/K, respectively, at room temperature with dopant molar ratio of 0.11. P-type leg used modified PEDOT:PSS. Based on modified PCBM and PEDOT:PSS materials, we fabricated a TE module device with 48 p-type and n-type thermocouple and tested their output voltage, short current, and power. Output voltage measured -0.82 V, and generated power reached almost 945 μW with 75 K temperature gradient at 453 K hot-side temperature. These promising results showed potential of modified PEDOT and PCBM as TE materials for application in device optimization.

关 键 词:organic thermoelectric generator thermocou-pie poly(3 4-ethylenedioxythiophene) polystyrene sulfo-nate (PEDOT-PSS) [6.6]-phenyl-C61butyric acid methylester (PCBM) 

分 类 号:TN[电子电信]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象