Impact Fretting Wear Behavior of Alloy 690 Tubes in Dry and Deionized Water Conditions  被引量:5

Impact Fretting Wear Behavior of Alloy 690 Tubes in Dry and Deionized Water Conditions

在线阅读下载全文

作  者:Zhen-Bing Cai Jin-Fang Peng Hao Qian Li-Chen Tang Min-Hao Zhu 

机构地区:[1]Traction Power State Laboratory, Southwest Jiaotong University, Chengdu 610031, China [2]Shanghai Nuclear Engineering Research and Design Institute,Shanghai 200233, China

出  处:《Chinese Journal of Mechanical Engineering》2017年第4期819-828,共10页中国机械工程学报(英文版)

基  金:Supported by National Natural Science Foundation of China(Grant Nos.51375407,U1530136,51627806);Shanghai Municipal Science and Technology Talent Program of China(Grant No.14R21421500);Young Scientific Innovation Team of Science and Technology of Sichuan(Grant No.2017TD0017)

摘  要:The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibra- tion, and it will take potential hazards to the service of the equipment. However, the present study focuses on the tangential fretting wear of alloy 690 tubes. Research on impact fretting wear of alloy 690 tubes is limited and the related research is imminent. Therefore, impact fretting wear behavior of alloy 690 tubes against 304 stainless steels is investigated. Deionized water is used to simulate the flow environment of the equipment, and the dry envi- ronment is used for comparison. Varied analytical tech- niques are employed to characterize the wear and tribochemical behavior during impact fretting wear. Char- acterization results indicate that cracks occur at high impact load in both water and dry equipment; however, the water as a medium can significantly delay the cracking time. The crack propagation behavior shows a jagged shape in the water, but crack extended disorderly in dry equip- ment because the water changed the stress distribution and retarded the friction heat during the wear process. The SEM and XPS analysis shows that the main failure mechanisms of the tube under impact fretting are fatiguewear and friction oxidation. The effect of medium(water) on fretting wear is revealed, which plays a potential and promising role in the service of nuclear power device and other flow equipments.The impact fretting wear has largely occurred at nuclear power device induced by the flow-induced vibra- tion, and it will take potential hazards to the service of the equipment. However, the present study focuses on the tangential fretting wear of alloy 690 tubes. Research on impact fretting wear of alloy 690 tubes is limited and the related research is imminent. Therefore, impact fretting wear behavior of alloy 690 tubes against 304 stainless steels is investigated. Deionized water is used to simulate the flow environment of the equipment, and the dry envi- ronment is used for comparison. Varied analytical tech- niques are employed to characterize the wear and tribochemical behavior during impact fretting wear. Char- acterization results indicate that cracks occur at high impact load in both water and dry equipment; however, the water as a medium can significantly delay the cracking time. The crack propagation behavior shows a jagged shape in the water, but crack extended disorderly in dry equip- ment because the water changed the stress distribution and retarded the friction heat during the wear process. The SEM and XPS analysis shows that the main failure mechanisms of the tube under impact fretting are fatiguewear and friction oxidation. The effect of medium(water) on fretting wear is revealed, which plays a potential and promising role in the service of nuclear power device and other flow equipments.

关 键 词:Impact fretting wear Alloy 690 Oxidativewear CRACK Fracture appearance 

分 类 号:TG115.5[金属学及工艺—物理冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象