基于权值动量的RBM加速学习算法研究  被引量:11

Research on RBM Accelerating Learning Algorithm with Weight Momentum

在线阅读下载全文

作  者:李飞[1] 高晓光[1] 万开方[1] 

机构地区:[1]西北工业大学电子信息学院,西安710129

出  处:《自动化学报》2017年第7期1142-1159,共18页Acta Automatica Sinica

基  金:国家自然科学基金(61305133;61573285)资助~~

摘  要:动量算法理论上可以加速受限玻尔兹曼机(Restricted Boltzmann machine,RBM)网络的训练速度.本文通过对现有动量算法进行仿真研究,发现现有动量算法在受限玻尔兹曼机网络训练中加速效果较差,且在训练后期逐渐失去了加速性能.针对以上问题,本文首先基于Gibbs采样收敛性定理对现有动量算法进行了理论分析,证明了现有动量算法的加速效果是以牺牲网络权值为代价的;然后,本文进一步对网络权值进行研究,发现网络权值中包含大量真实梯度的方向信息,这些方向信息可以用来对网络进行训练;基于此,本文提出了基于网络权值的权值动量算法,最后给出了仿真实验.实验结果表明,本文提出的动量算法具有更好的加速效果,并且在训练后期仍然能够保持较好的加速性能,可以很好地弥补现有动量算法的不足.Momentum algorithms can accelerate the training speed of restricted Boltzmann machine theoretically. Through a simulation study on existing momentum algorithms, it is found that existing momentum algorithms for training restricted Boltzmann machine have a poor accelerating effect and they began to lose acceleration performance. In the latter part of training process. Focusing on this problem, firstly, this paper gives a theoretical analysis of the algorithms based on Gibbs sampling convergence theorem. It is proved that the acceleration effect of existing momentum algorithms is at the expense of enlarging network weights. Then, a further investigation on network weights shows that the network weights contain a lot of information of the true gradient direction which can be used to train the network. According to this, a weight momentum algorithm is proposed based on the weight of the network. Finally, simulation results demonstrate that the proposed algorithm has a better acceleration effect and has the accelerating ability even in the end of the training process. Therefore the proposed algorithm can well make up for the weaknesses of existing momentum algorithms.

关 键 词:深度学习 受限玻尔兹曼机 动量算法 权值动量 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象