Towards the development of cavitation technology for upgrading bitumen: Viscosity change and chemical cavitation yield measurements  

Towards the development of cavitation technology for upgrading bitumen: Viscosity change and chemical cavitation yield measurements

在线阅读下载全文

作  者:Deepak M. Kirpalani Dipti Prakash Mohapatra 

机构地区:[1]Energy Mining and Environment Portfolio, National Research Council of Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada

出  处:《Petroleum Science》2017年第2期404-411,共8页石油科学(英文版)

摘  要:Among the different methods used for reducing viscosity of bitumen,acoustic cavitation during sonication is well recognised.Several chemical methods were used to detect the production of reactive species such as hydroxyl radicals and hydrogen peroxide during acoustic cavitation processes.However,quantification of cavitation yield in sonochemical systems is generally limited to low frequencies and has not been applied to bitumen processing.An empirical determination of the cavitation yield in midto high-frequency range(378,574,850,992,and1173 k Hz)was carried out by measuring the amount of iodine liberated from the oxidation of potassium iodide(KI).Further,cavitation yield and the effects of different sonic operating conditions such as power input(16.67%–83.33%)and solute concentration on cavitation yield were carried out in KI solution and sodium carboxymethyl cellulose–water mixture to obtain benchmark changes in rheology and chemistry using these two model fluids.The findings were then applied to bitumen upgrading through sonication.Through this study,it was found that the chemical cavitation yield peaked with a sonication frequency of 574 k Hz.It was also found that cavitation yield and viscosity change were correlated directly in bitumen and a 38%lower bitumen viscosity could be obtained by acoustic cavitation.Among the different methods used for reducing viscosity of bitumen,acoustic cavitation during sonication is well recognised.Several chemical methods were used to detect the production of reactive species such as hydroxyl radicals and hydrogen peroxide during acoustic cavitation processes.However,quantification of cavitation yield in sonochemical systems is generally limited to low frequencies and has not been applied to bitumen processing.An empirical determination of the cavitation yield in midto high-frequency range(378,574,850,992,and1173 k Hz)was carried out by measuring the amount of iodine liberated from the oxidation of potassium iodide(KI).Further,cavitation yield and the effects of different sonic operating conditions such as power input(16.67%–83.33%)and solute concentration on cavitation yield were carried out in KI solution and sodium carboxymethyl cellulose–water mixture to obtain benchmark changes in rheology and chemistry using these two model fluids.The findings were then applied to bitumen upgrading through sonication.Through this study,it was found that the chemical cavitation yield peaked with a sonication frequency of 574 k Hz.It was also found that cavitation yield and viscosity change were correlated directly in bitumen and a 38%lower bitumen viscosity could be obtained by acoustic cavitation.

关 键 词:BITUMEN Cavitation yield CMC-water KI solution Viscosity correlation 

分 类 号:TE626.86[石油与天然气工程—油气加工工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象