基于矩阵灰建模的单次P300检测新方法  被引量:2

A New Single Trial P300 Classification Method Based on Matrix Grey Modeling

在线阅读下载全文

作  者:谢松云[1] 张娟丽[1] 段绪[1] 刘畅[1] 李亚兵[1] 

机构地区:[1]西北工业大学电子信息学院,陕西西安710072

出  处:《电子学报》2017年第7期1660-1667,共8页Acta Electronica Sinica

基  金:国家自然科学基金(No.61273250);陕西省科技攻关项目(No.2015GY003);校研究生创业种子基金(No.Z2015112)

摘  要:针对少导联P300单次提取识别率较低的问题,提出了一种基于矩阵灰建模的参数模型法提取特征的方法,提高了P300单次识别率.首先对脑电信号进行预处理,然后选择导联组合,接着对每个Epoch进行建模,将模型参数作为特征向量输入SVM分类识别.结果表明,单次P300的平均识别率为91.43%,叠加平均3次正确率可高达97.87%.Aiming at the drawback of lowidentification accuracy in single trial P300 feature extraction and classification,a parameter model method based on Matrix Grey Modeling to extract P300 feature was proposed to improve the recognition accuracy of the visual evoked potential P300 in single trial classification. Firstly,EEG signal was preprocessed,and then channel set selection was applied. After that,the model parameters of Matrix Grey Modelling for each epoch was connected as the feature vector and were input to the SVMclassifier. The experimental results showthat the average accuracy of single trial P300 across all the subjects is 91. 43%,and the accuracy can be up to 97. 87% if 3 times averaging is used.

关 键 词:P300特征提取 矩阵灰建模 单次识别 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象