检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Paul NORBURY
机构地区:[1]School of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
出 处:《Acta Mathematica Sinica,English Series》2017年第9期1163-1183,共21页数学学报(英文版)
基 金:Supported by Australian Research Council(Grant No.DP1094328)
摘 要:We represent stationary descendant Cromov-Witten invariants of projective space, up to explicit combinatorial factors, by polynomials. One application gives the asymptotic behaviour of the large degree behaviour of stationary descendant Gromov-Witten invariants in terms of intersection numbers over the moduli space of curves. We also show that primary Gromov-Witten invariants are "virtual" stationary descendants and hence the string and divisor equations can be understood purely in terms of stationary invariants.We represent stationary descendant Cromov-Witten invariants of projective space, up to explicit combinatorial factors, by polynomials. One application gives the asymptotic behaviour of the large degree behaviour of stationary descendant Gromov-Witten invariants in terms of intersection numbers over the moduli space of curves. We also show that primary Gromov-Witten invariants are "virtual" stationary descendants and hence the string and divisor equations can be understood purely in terms of stationary invariants.
关 键 词:Gromov-Witten RECURSION ASYMPTOTIC
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44