机构地区:[1]College of Physics, Qingdao University, Qingdao 266071, China [2]Institute of Complexity Science, Qingdao University, Qingdao 266071, China [3]State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China [4]CRYSTECH lnc., Qingdao 266107, China
出 处:《Journal of Rare Earths》2017年第7期637-644,共8页稀土学报(英文版)
基 金:Project supported by National Natural Science Foundation of China(11204148,11374170);Taishan Scholar Program of Shandong Province;Open Project of State Key Laboratory of Rare Earth Resource Utilization(RERU2016015);the Applied Basic Research Programs for Youths of Qingdao(15-9-1-52-JCH);Qingdao Postdoctoral Application Research Project(2015127)
摘 要:A Yb_(0.11)Gd_(0.89)Ca_4O(BO_3)_3 crystal with new composition was grown by the Czochralski method. The crystal structure was measured and analyzed. The unit-cell parameters of the Yb_(0.11)Gd_(0.89)COB were calculated to be a=0.8089(7) nm, b=1.5987(6) nm, c=0.3545(8) nm, β=101.22o. The absorption and fluorescence spectra were measured. The maximum absorption cross-section of Yb_(0.11)Gd_(0.89) COB crystal was 0.79×10^(–20)cm^2, which occurred at 976 nm with Y polarization. The emission cross-section at 1027 nm was calculated to be 0.33×10^(–20) cm^2. The radiative lifetime trad was calculated to be 2.74 ms. The Stark energy-level diagram of Yb^(3+)in the Yb_(0.11)Gd_(0.89)COB crystal field at room temperature was determined. The ground-state energy level ~2F_(7/2) splitting was calculated to be as large as 1004 cm^(–1) and the zero-line energy was 10246 cm^(–1). A maximum output power of 9.35 W was achieved in continuous-wave(CW) mode, with the slope efficiency being 42.1%. Chemical etching experiment revealed that the dominating imperfections in the studied Yb_(0.11)Gd_(0.89) COB crystal were dislocations and sub-grain boundaries. The existence of crystal defects could cause light scattering, and degrade laser output efficiency. The influence of crystal defects on laser properties was discussed.A Yb_(0.11)Gd_(0.89)Ca_4O(BO_3)_3 crystal with new composition was grown by the Czochralski method. The crystal structure was measured and analyzed. The unit-cell parameters of the Yb_(0.11)Gd_(0.89)COB were calculated to be a=0.8089(7) nm, b=1.5987(6) nm, c=0.3545(8) nm, β=101.22o. The absorption and fluorescence spectra were measured. The maximum absorption cross-section of Yb_(0.11)Gd_(0.89) COB crystal was 0.79×10^(–20)cm^2, which occurred at 976 nm with Y polarization. The emission cross-section at 1027 nm was calculated to be 0.33×10^(–20) cm^2. The radiative lifetime trad was calculated to be 2.74 ms. The Stark energy-level diagram of Yb^(3+)in the Yb_(0.11)Gd_(0.89)COB crystal field at room temperature was determined. The ground-state energy level ~2F_(7/2) splitting was calculated to be as large as 1004 cm^(–1) and the zero-line energy was 10246 cm^(–1). A maximum output power of 9.35 W was achieved in continuous-wave(CW) mode, with the slope efficiency being 42.1%. Chemical etching experiment revealed that the dominating imperfections in the studied Yb_(0.11)Gd_(0.89) COB crystal were dislocations and sub-grain boundaries. The existence of crystal defects could cause light scattering, and degrade laser output efficiency. The influence of crystal defects on laser properties was discussed.
关 键 词:optical materials rare earths optical properties crystal structure defects
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...