机构地区:[1]School of Electronic and Optical Engineering,Nanjing University of Science and Technology [2]School of Electronics and Electrical Engineering,Nanyang Institute of Technology
出 处:《Journal of Semiconductors》2017年第8期16-21,共6页半导体学报(英文版)
基 金:supported by the National Natural Science Foundation of China(Nos.91433108,61301023)
摘 要:We designed two transmission-mode GaAs/AIGaAs photocathodes with different AlxGa1-xAs layers, one has an AlxGal-xAs layer with the Al component ranging from 0.9 to 0, and the other has a fixed AI component 0.7. Using the first-principle method, we calculated the electronic structure and absorption spectrum ofAlx Ga1-x As at x = 0, 0.25, 0.5, 0.75 and 1, calculation results suggest that with the increase of the A1 component, the band gap of AlxGa1-xAs increases. Then we activated the two samples, and obtained the spectral response curves and quantum efficiency curves; it is found that sample 1 has a better shortwave response and higher quantum efficiency at short wavelengths. Combined with the band structure diagram of the transmission-mode GaAs/AIGaAs photo- cathode and the fitted performance parameters, we analyze the phenomenon. It is found that the transmission-mode GaAs/AlGaAs photocathode with variable AI component and various doping structure can form a two-stage built-in electric field, which improves the probability of shortwave response photoelectrons escaping to the vacuum. In con- clusion, such a structure reduces the influence of back-interface recombination, improves the shortwave response of the transmission-mode photocathode.We designed two transmission-mode GaAs/AIGaAs photocathodes with different AlxGa1-xAs layers, one has an AlxGal-xAs layer with the Al component ranging from 0.9 to 0, and the other has a fixed AI component 0.7. Using the first-principle method, we calculated the electronic structure and absorption spectrum ofAlx Ga1-x As at x = 0, 0.25, 0.5, 0.75 and 1, calculation results suggest that with the increase of the A1 component, the band gap of AlxGa1-xAs increases. Then we activated the two samples, and obtained the spectral response curves and quantum efficiency curves; it is found that sample 1 has a better shortwave response and higher quantum efficiency at short wavelengths. Combined with the band structure diagram of the transmission-mode GaAs/AIGaAs photo- cathode and the fitted performance parameters, we analyze the phenomenon. It is found that the transmission-mode GaAs/AlGaAs photocathode with variable AI component and various doping structure can form a two-stage built-in electric field, which improves the probability of shortwave response photoelectrons escaping to the vacuum. In con- clusion, such a structure reduces the influence of back-interface recombination, improves the shortwave response of the transmission-mode photocathode.
关 键 词:AlxGa1-xAs layer variable A1 component GaAs/AlGaAs photocathode quantum efficiency
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...