检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]同济大学环境科学与工程学院,上海200092
出 处:《化工学报》2017年第8期3282-3290,共9页CIESC Journal
基 金:国家自然科学基金项目(21522704)~~
摘 要:考察了弱磁场(WMF)对零价铁去除水中U(Ⅵ)效能的影响,并探讨了其主要机理。结果表明,在初始pH(pHini)为3.0~7.0,有弱磁场(w/WMF)的条件下,零价铁去除U(Ⅵ)的一级动力学速率常数提高了0.7~11.2倍。当初始pH为4.0、零价铁的投加量为0.5 g·L^(-1)时,弱磁场作用下的零价铁对U(Ⅵ)的去除容量为1.7 g·g^(-1),相比无弱磁场(w/o WMF)时提高了约0.3倍。pH变化、Fe^(2+)浓度和SEM的结果说明,弱磁场通过促进零价铁的腐蚀促进其对U(Ⅵ)的去除。从XPS光谱分析中发现,零价铁去除U(Ⅵ)的主要机理为先吸附、后还原。弱磁场只能够加速其吸附和还原过程,而不能影响零价铁对U(Ⅵ)的去除机理。弱磁场促进零价铁去除U(Ⅵ)具有价格低廉、环境友好、无须额外的能量和药剂投入等优点,因而有良好的应用前景。The influence of weak magnetic field (WMF) on the process of U(Ⅵ) removing by zero valent iron (ZVI) was explored and the main mechanism was investigated. The weak magnetic field could obviously promote the U(Ⅵ) sequestration under the condition of different initial pH (pHini). The first-order kinetic rate constants of U(Ⅵ) removal by ZVI with WMF at pH 3.0-7.0 were about 0.7 to 11.2 fold greater than those without WMF. The removal capacity of zero-valent iron toward U(VI) was 1.7 g.g^-1 with WMF at initial pH 4.0 and Fe 0.5 g·L^-1, being of 0.3-fold higher than that without WMF. The weak magnetic field could promote the corrosion of the zero-valent iron, thereby increasing its removal of U(Ⅵ), which could be verified by SEM, [Fe^2+] and pH variation. The main mechanism of U(Ⅵ) removal by zero valent iron was adsorption together with reduction. The application of WMF did not change the mechanisms but accelerated its adsorption and reduction toward U(Ⅵ). As a chemical-, energy-free and environmental-friendly method, improving the reactivity of ZVI by WMF superimposition was novel and promising in the prospect of U(Ⅵ) sequestration from water.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.128.179