面向压缩感知的稀疏度自适应图像重构算法研究  被引量:6

Sparsity Adaptive Image Reconstruction Algorithm for Compressed Sensing

在线阅读下载全文

作  者:吴俊熊 刘紫燕[1,2] 冯丽[3] 张达敏[1] 

机构地区:[1]贵州大学大数据与信息工程学院,贵阳550025 [2]贵州省公共大数据重点实验室,贵阳550025 [3]国网重庆市电力公司,重庆400014

出  处:《小型微型计算机系统》2017年第8期1911-1915,共5页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(61263005)资助;贵州省校科技合作项目(黔科合计省合[2014]7002)资助

摘  要:自压缩感知理论(Compressed Sensing,CS)提出以来,重构算法的研究在CS技术中占据着重要地位,并受到了学者高度重视.针对目前重构算法在信号压缩采样中稀疏度未知这一缺点,提出一种稀疏度自适应的压缩采样匹配追踪算法(Sparsity Adaptive Compressive Sampling M atching Pursuit,SACo Sa M P).同时结合峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)、重构误差概率(Reconstruction Error Possibility,REP)等指标衡量算法的图像重构性能,仿真结果表明:在测量矩阵满足有限等距性质(Restricted Isometry Property,RIP)的条件下,本文提出的算法具有自适应能力强,准确度高,图像重构效果佳等优点.Since compressed sensing theory is proposed, the algorithm of image reconstruction plays an irreplaceable role in CS and a- rouses researchers' wide concern. A Sparsity Adaptive Compressive Sampling Matching Pursuit algorithm is proposed in order to tackle unknown sparsity of current greedy algorithms in compression sampling. And meanwhile, the performance of image reconstruction algorithm can be evaluated by making use of Peak Signal-to-Noise Ratio and Reconstruction Error Possibility. The simulation results indicate that the proposed algorithm has the following advantages of strong adaptability, high accuracy and amazing image reconstruction effects under meeting the condition of Restricted Isometry Property.

关 键 词:压缩感知 贪婪算法 图像重构 峰值信噪比 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象