检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]贵州大学大数据与信息工程学院,贵阳550025 [2]贵州省公共大数据重点实验室,贵阳550025 [3]国网重庆市电力公司,重庆400014
出 处:《小型微型计算机系统》2017年第8期1911-1915,共5页Journal of Chinese Computer Systems
基 金:国家自然科学基金项目(61263005)资助;贵州省校科技合作项目(黔科合计省合[2014]7002)资助
摘 要:自压缩感知理论(Compressed Sensing,CS)提出以来,重构算法的研究在CS技术中占据着重要地位,并受到了学者高度重视.针对目前重构算法在信号压缩采样中稀疏度未知这一缺点,提出一种稀疏度自适应的压缩采样匹配追踪算法(Sparsity Adaptive Compressive Sampling M atching Pursuit,SACo Sa M P).同时结合峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)、重构误差概率(Reconstruction Error Possibility,REP)等指标衡量算法的图像重构性能,仿真结果表明:在测量矩阵满足有限等距性质(Restricted Isometry Property,RIP)的条件下,本文提出的算法具有自适应能力强,准确度高,图像重构效果佳等优点.Since compressed sensing theory is proposed, the algorithm of image reconstruction plays an irreplaceable role in CS and a- rouses researchers' wide concern. A Sparsity Adaptive Compressive Sampling Matching Pursuit algorithm is proposed in order to tackle unknown sparsity of current greedy algorithms in compression sampling. And meanwhile, the performance of image reconstruction algorithm can be evaluated by making use of Peak Signal-to-Noise Ratio and Reconstruction Error Possibility. The simulation results indicate that the proposed algorithm has the following advantages of strong adaptability, high accuracy and amazing image reconstruction effects under meeting the condition of Restricted Isometry Property.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28