雅达油田沥青层钻井风险预测方法探讨  被引量:1

PROBE ON PREDICTING DRILLING RISK IN ASPHALT FORMATION AT YADA OILFIELD

在线阅读下载全文

作  者:江朝[1] 王利华[2] 黄在福[1] 侯立中[1] 庞小旺 

机构地区:[1]中国石化集团国际石油勘探开发有限公司 [2]长江大学石油工程学院

出  处:《钻采工艺》2017年第4期10-12,共3页Drilling & Production Technology

基  金:基金项目:中国石化集团科技部"伊朗雅达油田活跃沥青侵害防控钻井技术研究"(编号:P16014)

摘  要:沥青层钻井施工难点多、风险大,目前国内外并未形成系统的沥青分布规律地质预测方法。为降低沥青层钻井风险、减少非生产时间和节约成本,尝试从钻井工程的角度建立一种沥青层钻井风险预测方法。该方法通过归纳和分析大量已钻遇沥青层油井的特征,将钻遇沥青层的油井按实钻难度划分为六类风险等级,并通过数学方法将之定量化赋值处理。在此基础上利用已钻井的风险等级作为散点样本数据,选取MATLAB空间插值函数Griddata和双调和格林函数插值法进行插值计算,从而绘制出沥青层钻井风险等级区域分布图。利用该方法在雅达kazhdumi油田进行现场实钻验证,结果表明,该方法在缺乏地质预测模型的条件下,能够较好的实现雅达油田沥青层的钻前风险预测,为保证后续钻井作业的顺利实施提供了技术支撑。The drilling operation in asphalt formations is typical of many challenges and high risks. Up to now no systematical method is established to predict the asphalt distribution rules geologically. In order to decrease the risks,reduce nonproductive time and save cost of drilling in asphalt,efforts have been made to set up a method predicting drilling risks in asphalt. By summarizing and analyzing characteristics of wells in drilled asphalt layer,drilling risks are classified into 6 grades based on actual difficulties met in drilling these wells. And by mathematical method the classification is defined with numbers or values. And using the risk grades of drilled wells as the sparse value samples,an interpolation is made by MATLAB software with Griddata function and Biharmonic spline interpolation method,and a regional asphalt-formation-drilling risk distribution chart is plotted from the interpolation. This method has been verified at Yada Oilfield in Iran. The results show that this method can predict the drilling risk before spud-in at Yada Oilfield on condition that geologic prediction model is unavailable,providing atechnical support for following drilling operations.

关 键 词:雅达油田 沥青层 风险等级 空间插值 预测 

分 类 号:TE28[石油与天然气工程—油气井工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象