基于GHM多小波算法的功耗分析攻击  

Power analysis attack based on GHM multiwavelet algorithm

在线阅读下载全文

作  者:段晓毅[1] 佘高健 高献伟[1] 方华威 何斯曼 陈东[1] Duan Xiaoyi She Gaojian Gao Xianwei Fang Huawei He Siman Chen Dong(Beijing Electronic & Technology Institute, Beifing 100070, China)

机构地区:[1]北京电子科技学院,北京100070

出  处:《计算机应用研究》2017年第9期2777-2781,2790,共6页Application Research of Computers

基  金:北京电子科技学院基金资助项目(328201505;328201508);北京市自然科学基金资助项目(4163076)

摘  要:功耗分析的密钥获取是基于采集的功耗信号,功耗信号的信噪比是影响分析密钥成功率的重要因素,所以噪声能否被有效去除是提高功耗分析成功率的关键,针对该问题引入了基于GHM多小波的预处理方法。该方法首先对功耗曲线进行GHM多小波阈值去噪处理,其目的是最大限度地去除功耗曲线中不相关的噪声,提高功耗曲线中真实信号的信噪比,从而提高攻击效率。在MEGA16微控制器上,采集固定密钥随机明文的ASE算法的功耗曲线,对比原始功耗曲线与去噪后的功耗曲线执行相关功耗分析。实验结果表明,使用去噪后的功耗曲线执行相关功耗分析所需的功耗曲线减少了89.5%,相关系数平均提高了107.9%,验证了新方法的有效性。In power analysis, key acquisition for power analysis was based on the collected power signal, and one of the most important factors impacting the success rate of key analysis was the signal to noise ratio of real power consumption. So the noise could be effectively removed was the key to improve the success rate of power analysis. To solve this problem, this paper introduced the preprocessing method based on GHM muhiwavelet. This method was to denoise power traced by GHM muhiwavelet thresholding, with an aim to remove irrelevant noise from the power traces as far as possible, and raise the signal to noise ratio of real signal in the power traces. It collected power traces of AES algorithm in MEGA16 micro controller hardware platform for the same key with different plaintexts and performed correlation power analysis with original power traces and the denoised power traces. Experimental results show that the power traces required for correlation power analysis performed with the denoised power traces is reduced by 89.5% , and the correlation coefficient is raised by 107.9% on average. This verifies the effectiveness of the new method.

关 键 词:相关功耗分析 AES算法 多小波 去噪 

分 类 号:TP309.2[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象