基于改进小波阈值去噪和RCRSV-MP算法的电力系统低频振荡模态辨识  被引量:11

Power system low-frequency oscillation mode identification base on improved wavelet threshold de-noising and RCRSV-MP algorithm

在线阅读下载全文

作  者:刘思议[1] 金涛[1] 刘对[1] 

机构地区:[1]福州大学电气工程与自动化学院,福建福州350116

出  处:《电力自动化设备》2017年第8期166-172,共7页Electric Power Automation Equipment

基  金:欧盟FP7国际科技合作基金资助项目(909880);国家自然科学基金资助项目(61304260)~~

摘  要:针对广域测量系统低频振荡辨识中存在噪声干扰和定阶不准确的问题,提出了基于改进小波阈值去噪和奇异值相对变化率(RCRSV)定阶的矩阵束(MP)算法相结合的方法对电力系统低频振荡模态进行辨识。在小波去噪基础上对阈值进行改进,使得阈值随分解层数的增加而发生改变,能够有效地抑制低频振荡信号的噪声;然后将去噪后的信号用RCRSV-MP算法进行辨识,从而获取低频振荡各个模态参数。根据RCRSV定阶具有自适应性,无需人为设定阈值。通过仿真算例、测试系统及电网实际案例的结果显示,所提方法相比于其他方法具有抗噪性能好、拟合精度高等优点,具有较强的实用性,能够实现在线辨识。Aiming at the noise interference and incorrect order in the low-frequency oscillation identi- fication of wide-area measurement system,a method based on the improved wavelet threshold de-noising and RCRSV-MP(Relative Change Rate Singular Value ordered Matrix Pencil) algorithm is proposed to identify the low-frequency oscillation modes of power system. Based on the wavelet de-noising,the improved thre- shold varies with the increase of decomposition levels to effectively suppress the noise of low-frequency oscillation signals. The de-noised signals are then identified by the RCRSV-MP algorithm to obtain the parameters of each oscillation mode. The order set by the RCRSV is adaptive and no manual threshold is needed. Research results of simulation example,test system and actual grid case show that,compared to other methods,the proposed method has better anti-noise performance,higher fitting accuracy and stronger practicability in the on-line identification.

关 键 词:电力系统 低频振荡 小波去噪 矩阵束算法 模态辨识 奇异值相对变化率 拟合精度 

分 类 号:TM712[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象