机构地区:[1]College of Mathematics and Physics,Suzhou University of Science and Technology,Suzhou 215009,China [2]College of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,China
出 处:《Chinese Physics B》2017年第8期201-209,共9页中国物理B(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.11572212 and 11272227);the Innovation Program of Suzhou University of Science and Technology,China(Grant No.SKYCX16 012)
摘 要:This paper focuses on studying the Noether symmetry and the conserved quantity with non-standard Lagrangians, namely exponential Lagrangians and power-law Lagrangians on time scales. Firstly, for each case, the Hamilton prin- ciple based on the action with non-standard Lagrangians on time scales is established, with which the corresponding Euler-Lagrange equation is given. Secondly, according to the invariance of the Hamilton action under the infinitesimal transformation, the Noether theorem for the dynamical system with non-standard Lagrangians on time scales is established. The proof of the theorem consists of two steps. First, it is proved under the infinitesimal transformations of a special one-parameter group without transforming time. Second, utilizing the technique of time-re-parameterization, the Noether theorem in a general form is obtained. The Noether-type conserved quantities with non-standard Lagrangians in both clas- sical and discrete cases are given. Finally, an example in Friedmann-Robertson-Walker spacetime and an example about second order Duffing equation are given to illustrate the application of the results.This paper focuses on studying the Noether symmetry and the conserved quantity with non-standard Lagrangians, namely exponential Lagrangians and power-law Lagrangians on time scales. Firstly, for each case, the Hamilton prin- ciple based on the action with non-standard Lagrangians on time scales is established, with which the corresponding Euler-Lagrange equation is given. Secondly, according to the invariance of the Hamilton action under the infinitesimal transformation, the Noether theorem for the dynamical system with non-standard Lagrangians on time scales is established. The proof of the theorem consists of two steps. First, it is proved under the infinitesimal transformations of a special one-parameter group without transforming time. Second, utilizing the technique of time-re-parameterization, the Noether theorem in a general form is obtained. The Noether-type conserved quantities with non-standard Lagrangians in both clas- sical and discrete cases are given. Finally, an example in Friedmann-Robertson-Walker spacetime and an example about second order Duffing equation are given to illustrate the application of the results.
关 键 词:time scale non-standard Lagrangian Noether symmetry conserved quantity
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...