Required width of exit to avoid the faster-is-slower effect in highly competitive evacuation  被引量:3

Required width of exit to avoid the faster-is-slower effect in highly competitive evacuation

在线阅读下载全文

作  者:张玉春 马剑 司有亮 冉桐 吴凡雨 王国元 林鹏 

机构地区:[1]Department of Fire Safety Engineering,Faculty of Geosciences and Environmental Engineering,Southwest Jiaotong University,Chengdu 610031,China [2]School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 610031,China

出  处:《Chinese Physics B》2017年第8期219-224,共6页中国物理B(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.51578464 and 71473207);China Fundamental Research Funds for Central Universities(Grant No.2682016cx082)

摘  要:A group of competitive people escaping through an exit could lead to the formation of a deadlock, which significantly increases the evacuation time. Such a phenomenon is called the faster-is-slower effect(FIS) and it has been experimentally verified in different systems of particles flowing through an opening. In this paper, the numerical simulation based on discrete element method(DEM) is adopted to study a group of highly competitive people through an exit of varying widths. The FIS effect is observed for a narrow exit whilst it is not observed for the exit wide enough to accommodate two people through it side-by-side. Experimental validation of such a phenomenon with humans is difficult due to ethical issues. The mouse is a kind of self-driven and soft-body creature and it exhibits selfish behaviour under stressed conditions.Particles flowing through an opening in different systems, such as pedestrian flow, animal flow, silo flow, etc. have similar characteristics. Therefore, experimental study is conducted by driving mice to escape through an exit of different widths at varying levels of stimulus. The escape time through a narrow exit(i.e., 2 cm) increases obviously with the increase of stimulus level but it is quite opposite to a wider exit(i.e., 4 cm). The FIS effect is avoided for an exit wide enough to accommodate two mice passing through it side-by-side. The study illustrates that FIF effect could be effectively prevented for an exit when its width is twice the size of particles.A group of competitive people escaping through an exit could lead to the formation of a deadlock, which significantly increases the evacuation time. Such a phenomenon is called the faster-is-slower effect(FIS) and it has been experimentally verified in different systems of particles flowing through an opening. In this paper, the numerical simulation based on discrete element method(DEM) is adopted to study a group of highly competitive people through an exit of varying widths. The FIS effect is observed for a narrow exit whilst it is not observed for the exit wide enough to accommodate two people through it side-by-side. Experimental validation of such a phenomenon with humans is difficult due to ethical issues. The mouse is a kind of self-driven and soft-body creature and it exhibits selfish behaviour under stressed conditions.Particles flowing through an opening in different systems, such as pedestrian flow, animal flow, silo flow, etc. have similar characteristics. Therefore, experimental study is conducted by driving mice to escape through an exit of different widths at varying levels of stimulus. The escape time through a narrow exit(i.e., 2 cm) increases obviously with the increase of stimulus level but it is quite opposite to a wider exit(i.e., 4 cm). The FIS effect is avoided for an exit wide enough to accommodate two mice passing through it side-by-side. The study illustrates that FIF effect could be effectively prevented for an exit when its width is twice the size of particles.

关 键 词:faster-is-slower effect DEM exit width highly competitive evacuation 

分 类 号:TU998.1[建筑科学—市政工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象