Total ionizing radiation-induced read bit-errors in toggle magnetoresistive random-access memory devices  被引量:4

Total ionizing radiation-induced read bit-errors in toggle magnetoresistive random-access memory devices

在线阅读下载全文

作  者:崔岩 杨玲 高腾 李博 罗家俊 

机构地区:[1]Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China [2]Key Laboratory of Silicon Device and Technology,Chinese Academy of Sciences,Beijing 100029,China

出  处:《Chinese Physics B》2017年第8期444-449,共6页中国物理B(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant No.61404161)

摘  要:The 1-Mb and 4-Mb commercial toggle magnetoresistive random-access memories(MRAMs) with 0.13 μm and 0.18-μm complementary metal–oxide–semiconductor(CMOS) process respectively and different magnetic tunneling junctions(MTJs) are irradiated with a Cobalt-60 gamma source. The electrical functions of devices during the irradiation and the room temperature annealing behavior are measured. Electrical failures are observed until the dose accumulates to 120-krad(Si) in 4-Mb MRAM while the 1-Mb MRAM keeps normal. Thus, the 0.13-μm process circuit exhibits better radiation tolerance than the 0.18-μm process circuit. However, a small quantity of read bit-errors randomly occurs only in 1-Mb MRAM during the irradiation while their electrical function is normal. It indicates that the store states of MTJ may be influenced by gamma radiation, although the electrical transport and magnetic properties are inherently immune to the radiation. We propose that the magnetic Compton scattering in the interaction of gamma ray with magnetic free layer may be the origin of the read bit-errors. Our results are useful for MRAM toward space application.The 1-Mb and 4-Mb commercial toggle magnetoresistive random-access memories(MRAMs) with 0.13 μm and 0.18-μm complementary metal–oxide–semiconductor(CMOS) process respectively and different magnetic tunneling junctions(MTJs) are irradiated with a Cobalt-60 gamma source. The electrical functions of devices during the irradiation and the room temperature annealing behavior are measured. Electrical failures are observed until the dose accumulates to 120-krad(Si) in 4-Mb MRAM while the 1-Mb MRAM keeps normal. Thus, the 0.13-μm process circuit exhibits better radiation tolerance than the 0.18-μm process circuit. However, a small quantity of read bit-errors randomly occurs only in 1-Mb MRAM during the irradiation while their electrical function is normal. It indicates that the store states of MTJ may be influenced by gamma radiation, although the electrical transport and magnetic properties are inherently immune to the radiation. We propose that the magnetic Compton scattering in the interaction of gamma ray with magnetic free layer may be the origin of the read bit-errors. Our results are useful for MRAM toward space application.

关 键 词:magnetoresistive random-access memories total ionizing dose effect magnetic tunneling junction magnetic Compton scattering effect 

分 类 号:TP333[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象