Degradation behavior of electrical properties of GaInAs(1.0 eV)and GaInAs(0.7 eV)sub-cells of IMM4J solar cells under 1-MeV electron irradiation  被引量:2

Degradation behavior of electrical properties of GaInAs (1.0 eV) and GaInAs (0.7 eV) sub-cells of IMM4J solar cells under1-MeV electron irradiation

在线阅读下载全文

作  者:张延清 霍明学 吴宜勇 孙承月 赵慧杰 耿洪滨 王帅 刘如彬 孙强 

机构地区:[1]School of Materials Science&Engineering,Harbin Institute of Technology,Harbin 150001,China [2]Research Center of Basic Space Science,Harbin Institute of Technology,Harbin 150001,China [3]The 18th Research Institute of China Electronics Technology Group Corporation,Tianjin 300381,China

出  处:《Chinese Physics B》2017年第8期569-576,共8页中国物理B(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant No.11475049)

摘  要:In this work the degradation effects of the Ga_(0.7)In_(0.3)As(1.0 eV) and Ga_(0.42)In_(0.58)As(0.7 eV) sub-cells for IMM4J solar cells are investigated after 1-MeV electron irradiation by using spectral response and photoluminescence(PL) signal amplitude analysis, as well as electrical property measurements. The results show that, compared with the electrical properties of traditional single junction(SJ) GaAs(1.41 eV) solar cell, the electrical properties(such as Isc, Voc, and Pmax)of the newly sub-cells degrade similarly as a function of log ?, where ? represents the electron fluence. It is found that the degradation of Voc is much more than that of Isc in the irradiated Ga_(0.42)In_(0.58)As(0.7 eV) cells due to the additional intrinsic layer, leading to more serious damage to the space charge region. However, of the three types of SJ cells with the gap widths of 0.7, 1.0, and 1.4 eV, the electric properties of the Ga_(0.7)In_(0.3)As(1.0 eV) cell decrease largest under each irradiation fluence. Analysis on the spectral response indicates that the Jsc of the Ga_(0.7)In_(0.3)As(1.0 eV) cell also shows the most severe damage. The PL amplitude measurements qualitatively confirm that the degradation of the effective minority carrier life-time(τeff) in the SJ Ga_(0.7)In_(0.3)As cells is more drastic than that of SJ GaAs cells during the irradiation. Thus,the output current of Ga_(0.7)In_(0.3)As sub-cell should be controlled in the irradiated IMM4J cells.In this work the degradation effects of the Ga_(0.7)In_(0.3)As(1.0 eV) and Ga_(0.42)In_(0.58)As(0.7 eV) sub-cells for IMM4J solar cells are investigated after 1-MeV electron irradiation by using spectral response and photoluminescence(PL) signal amplitude analysis, as well as electrical property measurements. The results show that, compared with the electrical properties of traditional single junction(SJ) GaAs(1.41 eV) solar cell, the electrical properties(such as Isc, Voc, and Pmax)of the newly sub-cells degrade similarly as a function of log ?, where ? represents the electron fluence. It is found that the degradation of Voc is much more than that of Isc in the irradiated Ga_(0.42)In_(0.58)As(0.7 eV) cells due to the additional intrinsic layer, leading to more serious damage to the space charge region. However, of the three types of SJ cells with the gap widths of 0.7, 1.0, and 1.4 eV, the electric properties of the Ga_(0.7)In_(0.3)As(1.0 eV) cell decrease largest under each irradiation fluence. Analysis on the spectral response indicates that the Jsc of the Ga_(0.7)In_(0.3)As(1.0 eV) cell also shows the most severe damage. The PL amplitude measurements qualitatively confirm that the degradation of the effective minority carrier life-time(τeff) in the SJ Ga_(0.7)In_(0.3)As cells is more drastic than that of SJ GaAs cells during the irradiation. Thus,the output current of Ga_(0.7)In_(0.3)As sub-cell should be controlled in the irradiated IMM4J cells.

关 键 词:IMM4J Ga0.7In0.3As (1.0 eV) Gao.42In0.58As (0.7 eV) electrical properties 

分 类 号:TM914.4[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象