ON THE FIRST EIGENVALUE OF THE MEAN FINSLER-LAPLACIAN  

ON THE FIRST EIGENVALUE OF THE MEAN FINSLER-LAPLACIAN

在线阅读下载全文

作  者:贺群 曾凡奇 郑大小 

机构地区:[1]Schoolof Mathematical Sciences, Tongji University [2]Department of Mathematics, Anhui Normal University

出  处:《Acta Mathematica Scientia》2017年第4期1162-1172,共11页数学物理学报(B辑英文版)

基  金:supported by NSFC(11471246);NSFAP(1608085MA03)

摘  要:In this paper, we prove that several different definitions of the Finsler-Laplacian are equivalent. Then we prove that any Berwald metric is affinely equivalent to its mean metric and give some upper or lower bound estimates for the first eigenvalue of the mean Laplacian on Berwald manifolds, which generalize some results in Riemannian geometry.In this paper, we prove that several different definitions of the Finsler-Laplacian are equivalent. Then we prove that any Berwald metric is affinely equivalent to its mean metric and give some upper or lower bound estimates for the first eigenvalue of the mean Laplacian on Berwald manifolds, which generalize some results in Riemannian geometry.

关 键 词:Finsler-Laplacian mean metric mean Laplacian first eigenvalue 

分 类 号:O186.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象