检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Matgorzata PROCKOW Elzbieta KUZNIK-KOWALSKA Pawet MACKIEWICZ
机构地区:[1]Museum of Natural History, University of Wroctaw, Invertebrate Systematics and Ecology, Institute of Sienkiewicza 21, 50-335 WrocTaw, Poland [2]Department of Biology, Wroctaw University of Environmental and Life Sciences, Kozuchowska 5b, 51-631 Wroctaw, Poland [3]Department of Genomics, Faculty of Biotechnology University of Wroctaw, Fryderyka Joliot-Curie 14a, 50-383 Wroctaw, Poland
出 处:《Current Zoology》2017年第4期389-402,共14页动物学报(英文版)
摘 要:Morphological variation of snails from the genus Trochulus is so huge that their taxonomy is unclear. The greatest variability concerns forms hispidus and sericeus/plebeius, which are often considered as separate species. To evidence the species barriers, we carried out crossbreeding ex- periments between these two sympatric morphs. Moreover, we compared the shell morphology of laboratory-bred offspring with their wild parents to test if the variation can be explained by the phenotypic plasticity model. We found that the two Trochulus morphs show no reproductive bar- riers. The fecundity rates, the mean clutch size, and F~ viability observed for all crosses were not significantly different. In hybrid crosses (in F2 generation), we also recorded reproduction compati- bility, similar fecundity, and hatching success as in their parents. Accordingly, phylogenetic ana- lyses revealed the significant grouping of sequences from these different morphs and supported no constrains in reproduction between them. Comparison of shell morphology between wild and laboratory samples showed that various characters appeared highly plastic. The average shell shape of the hispidus morph changed significantly from flat with wide umbilicus to elevated with narrower umbilicus such as in the sericeus/plebeius morph. All these findings indicate that the examined morphs do not represent separate biological species and the evolutionary process is not advanced enough to separate their genetic pool. Therefore, phenotypic plasticity has played a sig- nificant role in the evolution of Trochulus shell polymorphism. The two morphs can evolve inde- pendently in separate phylogenetic lineages under the influence of local environmental conditions.
关 键 词:CROSSBREEDING cytochrome c oxidase subunit I molecular phylogeny phenotypic variation principal component analysis shell morphology.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62