检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张鹏[1] 朱育强[1] 王丽莉[1] 周胜军[1] Zhang Peng Zhu Yuqiang Wang Lili Zhou Shengjun(Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021)
出 处:《中国农学通报》2017年第21期134-137,共4页Chinese Agricultural Science Bulletin
基 金:浙江省公益技术研究农业项目"黄瓜白粉病抗性基因精细定位及分子标记开发"(2016C32097);浙江省农业科学院青年人才培养项目"耐热;抗病黄瓜新品种的选育"(2016R23R08E03)
摘 要:黄瓜叶片白粉病染病程度的判定,对于确定病灾预防措施意义重大。笔者采用机器视觉技术对叶片病斑进行有效识别,借助人工神经网络完成对叶片染病状态的模式分类。根据病斑的规模及面积分布提出了白斑区域面积比、平均白斑面积、白斑覆盖率等特征参数,借助这3个特征参数实现了叶片染病程度的定量分析,并借助人工神经网络完成了对叶片染病状态的模式分类。4类白斑叶片的正确识别率分别为88%、91%、92%、94%。To clarify the degree of cucumber leaf powdery mildew is important to determine the measures for disease prevention.In this study,leaf scab was identified effectively by the machine vision technology,as characteristic parameters,white spot area ratio,average white spot area and white spot coverage were presented based on the scale and area distribution of the scab.The level of leaf disease was quantitatively analyzed with the three characteristic parameters,and the pattern classification of leaf powdery mildew situation was accomplished by the artificial neural network.The correct recognition rate of the four classes of white spot leaf was 88%,91%,92%,and 94%,respectively.
关 键 词:黄瓜叶片白粉病 机器视觉 数字图像处理 BP网络
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28